大模型中的RAG是什么?

RAG(Retrieval-Augmented Generation,检索增强生成) 是大语言模型(LLM)中一种结合信息检索与文本生成的技术,旨在提升模型回答的准确性和时效性。以下是深度解析:


1. RAG 的核心原理

  • 传统LLM的缺陷
    纯生成式模型(如GPT)依赖训练数据中的知识,无法实时获取新信息,且可能产生“幻觉”(编造事实)。
  • RAG的解决方案
    动态检索 + 生成,即在生成答案前,先从外部知识库检索相关文档片段,再将检索结果与用户输入结合生成回答。

2. RAG 的典型工作流程

  1. 检索(Retrieval)
    • 用户提问 → 向量化(Embedding)→ 与知识库文档的向量进行相似度匹配(如余弦相似度)。
    • 常用工具:FAISSChromaElasticsearchMilvus
  2. 增强(Augmentation)
    • 将检索到的相关文档片段(如Top 3段落)与用户问题拼接,形成增强后的提示词(Prompt)。
    • 示例Prompt模板:
      基于以下上下文回答问题:
      {检索到的文档1}
      {检索到的文档2}
      问题:{用户输入}
      
  3. 生成(Generation)
    • LLM根据增强后的Prompt生成最终回答(如Claude/GPT-4)。

3. RAG 的核心优势

优势说明
知识实时更新无需重新训练模型,更新知识库即可获取最新信息(如新闻、研究报告)。
减少幻觉答案基于检索到的真实文档,可靠性更高。
可解释性可返回参考文档来源(如链接/页码),方便验证答案准确性。
低成本比微调(Fine-tuning)大模型更节省算力资源。

4. RAG 的技术实现(以LangChain为例)

from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

# 1. 加载知识库文档(示例:网页)
loader = WebBaseLoader("https://example.com/article")
docs = loader.load()

# 2. 构建向量数据库
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(docs, embeddings)

# 3. 检索增强生成
retriever = vectorstore.as_retriever()
llm = ChatOpenAI(model="gpt-4")

template = """基于以下上下文回答:
{context}
问题:{input}"""
prompt = ChatPromptTemplate.from_template(template)

from langchain_core.runnables import RunnablePassthrough
chain = (
    {"context": retriever, "input": RunnablePassthrough()}
    | prompt
    | llm
)

# 提问
chain.invoke("这篇文章的主旨是什么?")

5. RAG vs 其他知识增强方法

方法优点缺点
RAG动态更新知识,成本低依赖检索质量,上下文长度受限
Fine-tuning模型深度适配领域知识训练成本高,无法实时更新
Prompt工程零样本/小样本快速使用复杂知识处理能力有限

6. 典型应用场景

  • 企业知识库问答:内部文档、产品手册的智能查询
  • 学术研究:基于论文库的文献综述助手
  • 客服系统:结合最新政策文档生成准确回复
  • 医疗咨询:检索医学指南后生成建议

7. 高级优化方向

  • 检索优化
    • 混合检索(关键词+向量)
    • 查询重写(Query Rewriting)
  • 生成优化
    • 答案验证(Self-Check)
    • 多文档摘要融合
  • 评估指标
    • 命中率(Hit Rate)
    • 答案相关性(BERTScore)

常见问题

Q: RAG必须依赖向量数据库吗?
A: 不是。传统全文检索(如Elasticsearch)也可用,但向量检索更适合语义匹配。

Q: 如何解决长上下文截断问题?
A: 可采用:

  • 文档分块(Chunking)优化
  • 层次化检索(先粗筛后精炼)

Q: RAG的局限性?
A: 对检索结果敏感,若检索错误会导致生成错误;知识库覆盖不到的领域仍可能产生幻觉。

如果需要具体场景的RAG实现方案(如PDF问答/数据库连接),可以进一步探讨!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值