多模态RAG的几种思路-langchain

Semi-structured RAG

链接:https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb
数据对象:表格和文本
流程:分别做摘要,做摘要嵌入,检索摘要,那对应的原文或表格送给大模型。
在这里插入图片描述

Semi-structured and Multi-modal RAG

数据对象:表格,文本,图片。表格和文本视作一个模态,下述把二者统称为文本。
流程一:多模态嵌入,对文本和图片分布做嵌入。使用query嵌入进行向量检索,使用得到的图片和文本送给VLM。
流程二:使用VLM对图片做文本摘要描述。文本也都做摘要。对三者做嵌入。做文本向量检索。得到的文本chunk送给大模型。
流程三:使用VLM对图片做文本摘要描述。根据检索到的图像摘要的文本,得到原始图片。送给VLM。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵海之森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值