17.1 自然语言处理中文本数据增强方法

本文详细探讨了自然语言处理中的文本数据增强技术,包括同义词替换(基于近义词表、词向量和MASK语言模型)、回译、加入随机噪声(单词级别和句子级别的语法变换、顺序交换、语义相关噪声)以及条件增强和生成对抗网络等方法。这些技术旨在扩大训练数据量、提高模型的鲁棒性和多样性,防止过拟合,其中回译和预训练语言模型生成的数据增强效果显著。此外,还介绍了无监督数据增强方法UDA。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


如今深度学习取得了令人瞩目的成功,但是深度学习模型需要有大量的标注数据进行支撑。真实应用情景中,经常会出现缺乏标注数据、数据分布不均衡导致模型鲁棒性差、模型性能不佳的问题,而文本增强能在一定程度上解决这些问题。

为什么文本增强会为模型带来性能提升呢?在扩大数据的数量使模型能够充分训练的表象之下,主要包含以下几个原因:

1、文本增强引入了外部知识

  • 人工的先验知识,如将图片翻转之后图片类别不变,句子中动词的缩写展开变为原型语义不变等。
  • 领域外知识,如使用预训练的生成器生成新的样例时,引入了预训练模型中丰富的知识。

2、防止过拟合

  • 通过向数据中加入随机噪声,提升模型鲁棒性。
  • 通过扩大数据的数量,使其更加平滑。

1、方法综述

数据增强最早应用在CV领域,如对图片进行翻转、旋转、缩放、平移等。近年来,出现了更为复杂的CV数据增强方法,如图片风格迁移Luan et al.(2017)[1](如图1)。

图1 通过风格迁移得到图片增强

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值