- 博客(34)
- 收藏
- 关注
原创 conda创建虚拟环境、隔离虚拟环境
【摘要】本文介绍了使用conda管理虚拟环境的完整流程:1)通过"conda create -n env_name python=x.x"创建独立环境;2)用"conda activate env_name"激活环境;3)在PyCharm中配置现有conda环境作为项目解释器;4)通过"conda env remove -n env_name --all"删除环境。重点说明了不同项目可使用隔离的Python版本(如3.9和3.12),环境默认存储在
2025-06-25 01:03:39
222
原创 卷积神经网络中的通道注意力机制
摘要:卷积神经网络(CNN)中,特征图通过多通道捕捉不同特征(如颜色、边缘等)。通道注意力机制能够自动评估各通道的重要性,增强关键特征并抑制无关信息。其实现包含三个步骤:压缩(全局平均池化获取通道全局信息)、激励(全连接层计算通道权重)和缩放(权重与特征图相乘)。该机制提升了特征表达能力,同时减少了冗余信息,优化了模型性能。
2025-06-15 23:11:43
505
原创 YOLO11中的C3K2模块
C3k2 是 YOLO11 对传统特征提取模块的优化,核心就是更快、更准地抓图像里的关键特征(比如检测目标的轮廓、细节 ),而且得适配“实时检测需求(不能让模型算太久 )用“分支并行 + 灵活卷积核”,解决了这些痛点:分支并行:减少冗余计算,速度更快(适合实时检测,比如视频里的连续帧检测 )。灵活卷积核:不管目标大小、场景复杂与否,都能精准抓特征(小目标细节、大目标轮廓都不丢 )。
2025-06-14 11:45:58
314
原创 关于深度学习网络中的归一化BN
稳定训练:神经网络训练时,每层输入的分布会因为前面层参数更新而变化(叫 “内部协变量偏移”)。BN 会把每层输出的特征做归一化(均值 0、方差 1 ),让输入分布更稳定,这样模型训练更顺滑,不容易出现梯度消失、爆炸,也能加速收敛。减少过拟合:相当于给训练加了 “小扰动”(归一化过程会引入少量噪声 ),让模型没那么 “死板”,泛化能力更强,测试集上表现更好。缓解梯度依赖:让每层的更新不太受前面层的影响,梯度传递更稳定,深层网络也能好好训练。
2025-06-12 19:08:10
773
原创 ANN与SNN的那些事
ANN与SNN神经网络对比:ANN处理连续数值信息,持续计算能耗较高,时间信息利用较弱;SNN通过离散脉冲传递信息,事件驱动计算更节能,擅长处理时序信息且更接近生物神经元机制。两种网络在信息传递、计算方式、能耗及时序处理等方面存在显著差异,SNN在生物仿真和能效方面更具优势。
2025-06-02 18:42:00
412
原创 神经网络中的梯度消失与梯度爆炸
本文探讨了深度神经网络中梯度消失和梯度爆炸的问题及其解决方案。通过快递员传递包裹的类比,解释了梯度在反向传播过程中的衰减或放大机制。梯度消失是由于权重过小或激活函数导数不足导致信号衰减;梯度爆炸则源于权重过大使信号过度放大。深层网络更容易出现这些问题是因为链式反应的累积效应和激活函数的局限性。解决方案包括使用ReLU激活函数和ResNet的残差连接技术,后者通过"旁路"机制缩短梯度传播路径,有效缓解了深层网络的训练难题。这些方法为深度学习的稳定训练提供了重要保障。
2025-06-02 16:36:26
704
原创 残差神经网络ResNet
残差神经网络ResNet通过引入残差连接解决深层网络训练难题。传统深层网络易出现梯度消失或准确率退化问题。ResNet让输入可以跳过当前层直接传递,使网络能够有效训练上百层结构。其核心思想是让每层学习目标输出与输入的差值(残差),而非直接拟合复杂特征,从而降低训练难度。这种方法既缓解了梯度消失问题,又支持构建更深的网络结构,显著提升了模型性能。ResNet已成为图像识别等任务的基础架构,其"捷径"设计思想深刻影响了深度学习发展。
2025-06-02 16:25:50
304
原创 关于神经网络中的激活函数
这篇博客生动地解释了神经网络中激活函数的作用。通过类比"安检门"、"调光开关"和"跷跷板",文章形象地说明了ReLU、Sigmoid和Tanh三种常见激活函数的工作机制:它们分别实现信号过滤、范围压缩和对立关系构建。文章强调,没有激活函数的神经网络只能进行线性运算,而激活函数引入非线性变换能力,使网络能够模拟人类复杂的决策过程(如综合考虑多种因素决定是否出门)。正是这种非线性特性,让神经网络从简单的计算工具进化为能够处理图像识别、语言翻译等复杂任务
2025-06-01 17:08:23
821
原创 为什么1*1的卷积核可以改变模型的通道数量
1×1卷积核通过调整卷积核数量可以灵活改变模型的通道数。其本质是对输入通道进行加权求和,每个核将多通道信息融合为一个新通道。当输出通道数N小于输入通道数C1时实现降维(如256→128),大于时则升维(如128→256)。这一过程类似"特征过滤器",通过参数学习保留关键信息。例如将RGB三通道图像用1×1卷积加权融合为单通道灰度图,展示了通道压缩的原理,这种操作既能减少计算量又能保持网络表达能力。
2025-05-29 10:47:25
271
原创 关于YOLO网络的骨干,颈部和头部
本文通过工厂流水线类比,阐述了深度学习网络中骨干网络和颈部网络的功能及其优化策略。骨干网络作为"初级加工厂",负责从图像中提取基础到高级的特征;颈部网络则充当"组装车间",对不同特征进行融合。文章特别强调精简这两部分最后一层通道的重要性:通过减少冗余信息,既能提升计算效率,又能确保核心特征的精准传递,最终优化模型性能。这种通道精简策略相当于工厂出货时筛选核心货物,使后续处理更高效准确。
2025-05-28 22:34:47
391
原创 数据集的标注
本文以URPC2020水下数据集为例,解析了XML标注文件的结构与内容。该文件采用PASCAL VOC格式,通过<annotation>根标签包含图像标识(<frame>)和多个目标标注(<object>)。每个<object>包含类别名称(<name>echinus)和边界框坐标(<bndbox>)。文中详细解释了坐标参数(xmin,ymin,xmax,ymax)的含义,并以具体标注示例说明如何计算目标框的宽高。此类标注文件主要用于训
2025-05-28 10:55:14
546
原创 Pytorch中两个最基本的构件
Tensor支持多种数学运算,如矩阵与标量、矩阵与矩阵的加减乘除,以及矩阵的升维、降维、重塑等操作。此外,Tensor还支持按行或列求最大值、索引及求和等复杂操作。
2025-05-17 00:43:24
281
原创 Pytorch基础
pytorch的前身是torch,其是一个十分老牌、对多为矩阵数据进行操作的张量(tensor)库。pytorch具有两种高层面的功能使用强大的GPU加速的Tensor计算构建基于autograd系统的深度神经网络Autograd系统是一种自动微分(Automatic Differentiation)工具,用于高效计算函数的导数(梯度),广泛应用于深度学习框架(如PyTorch、TensorFlow)中训练神经网络。其核心功能是自动计算计算图中各操作的梯度,无需手动推导数学公式。
2025-05-15 22:50:53
252
原创 GitHub创建分支,切换分支,合并分支,删除分支,从本地库推送到远程库
GitHub创建分支,切换分支,合并分支,删除分支,从本地库推送到远程库
2025-05-14 21:59:55
270
原创 $ git add 报错:Unable to read current working directory
$ git add 报错:Unable to read current working directory
2025-05-13 17:25:35
273
2
原创 One-stage与Two-stage
目标检测方法根据其检测流程的复杂度,主要分为 One-Stage(单阶段) 和 Two-Stage(两阶段) 两大类。它们在速度、精度和应用场景上有显著差异。
2025-05-03 21:13:02
1031
原创 Dense Detector与Dense-to-Sparse Detectors
在图像或特征图的每个预设空间位置密集生成候选框(object candidates),直接预测其类别和位置偏移。:引入RPN(Region Proposal Network)替代Selective Search,实现端到端。(虽为稀疏检测,但灵感部分来自dense思想):将图像视为序列化特征,通过全局注意力机制生成候选。:抛弃anchor,直接对特征图每个点预测距离边界的偏移(anchor-free)。:首阶段生成稀疏候选(Region Proposals),次阶段精细化分类/回归。
2025-05-03 20:45:07
329
原创 Tiny Object Detection with Single Point Supervision
Tiny Object Detection with Single Point Supervision 论文精度
2025-04-30 15:11:00
654
1
原创 知识蒸馏的方法
什么是知识蒸馏?为什么要用知识蒸馏?有什么作用?知识蒸馏即teacher-student模型,顾名思义,其中包含了teacher和students两个部分。那为什么要有teacher和students这两个部分呢?图片来自这张图中有两个部分,一个是teacher部分,一个是student部分。
2025-04-18 16:58:48
678
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人