铁路相关数据集整理(目标检测,分割相关,吊弦病害检测,绝缘子缺陷检测,螺栓松动检测,轨道裂缝等)

提供了三个与铁路安全相关的数据集,包括接触网吊弦图像病害、铁路轨道螺栓图像和接触网异物检测的数据,可在CSDN平台免费下载,用于训练和提升铁路检测技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 接触网数据集下载及相关格式 接触网数据集通常来源于铁路供电安全检测监测系统(6C系统),这些数据集中包含了大量关于接触网状态的图像和标注信息。对于接触网相关数据集,其主要用途是对的状态进行分类、检测或预测潜在故障。 #### 数据集获取途径 目前公开可用的接触网数据集较少,但可以通过以下方式获得: 1. **科研合作**:部分高校和研究机构会基于项目需求发布特定领域的小规模数据集。例如,某些针对接触网缺陷的研究可能会附带开放数据集供学术界使用[^2]。 2. **工业合作伙伴**:一些大型轨道交通公司可能拥有内部采集的大规模数据集,并通过授权形式向研究人员提供访问权限。 3. **竞赛平台**:像Kaggle或其他AI挑战赛中偶尔会有与轨道维护相关的比赛,其中可能涉及接触网部件(如)的状态识别任务及其对应的数据资源。 #### 常见文件格式 接触网数据集一般由两大部分组成——原始图片和标签信息。以下是常见的几种存储格式: - **图像文件** - 图片通常是高分辨率RGB彩色照片 (.jpg, .png),用于展示接触网的实际状况。 - **标注文件** - XML 或 JSON 文件用来描述每张图中的对象位置及类别。例如 Pascal VOC 使用 `.xml` 来定义边界框坐标 (xmin,ymin,xmax,ymax) 和所属 class name;而 COCO 则采用更复杂的嵌套结构保存实例分割 mask 及其他元数据于单个`.json`文档之中。 下面给出一段简单的 Python 脚本示范如何解析标准 COCO 格式的JSON标注文件并提取感兴趣的目标类型(此处假设为目标为 'dropped_wrist_suspension'): ```python import json def load_coco_annotations(json_file_path): with open(json_file_path,'r',encoding='utf8') as f: data=json.load(f) annotations=[] categories={cat['id']: cat['name'] for cat in data['categories']} for ann in data['annotations']: if categories[ann['category_id']]=='dropped_wrist_suspension': img_info=data['images'][ann['image_id']] bbox=ann['bbox'] annotation={ 'filename':img_info['file_name'], 'width':img_info['width'], 'height':img_info['height'], 'class':'dropped_wrist_suspension', 'bbox':[int(x)for x in bbox] } annotations.append(annotation) return annotations if __name__=="__main__": result=load_coco_annotations('path_to_your_dataset/instances_val.json') print(result[:5]) # 打印前五个样本的信息 ``` 上述代码片段展示了从 COCO 风格的 JSON 注解文件加载指定类别的注释记录的方法。这有助于快速筛选出仅含掉落型腕臂悬挂的相关条目以便进一步分析或者训练模型之需。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

被欺骗的人工智能猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值