树形结构+dp思维 Codeforces Round #247 (Div. 2) C题 k-Tree

博客探讨了Lesha创造的k-Tree概念,这是一种特殊性质的无限根树。Dima想知道在k-Tree中,从根节点出发,权值总和为n且至少有一条边权重大于等于d的路径数量。问题可以通过动态规划解决,计算路径数量的dp1和dp2数组,最终答案为dp1[n]-dp2[n],模10^9+7。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

k-Tree

Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.

A k-tree is an infinite rooted tree where:

· each vertex has exactly k children;
· each edge has some weight;
· if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1, 2, 3, …, k.

The picture below shows a part of a 3-tree.
在这里插入图片描述
As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: “How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?”.

Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109 + 7).


题目大意:说明了 k 树的定义,然后问你从 1(根结点)开始,往下走,权值和为 n 的路径条数,要求路径上至少有一条边权值大于等于d;

虽然是涉及到了树的结构,但是和树没有太大关系,可以设:

dp1[i]+=dp1[j] (j>=i-k&&j<i) 表示组成 i 的路径条数;

dp2[i]+=dp2[j] (j>=i-d+1&&j<i) 表示组成 i 的路径条数,但是这个 i 本身就小于 d;

所以,dp1[n]-dp2[n] 就是答案要求的路径条数;

代码:

#include<bits/stdc++.h>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值