旋转矩阵(力扣)

题目描述

给你一幅由 N × N 矩阵表示的图像,其中每个像素的大小为 4 字节。请你设计一种算法,将图像旋转 90 度。

不占用额外内存空间能否做到?

示例 1:

给定 matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

原地旋转输入矩阵,使其变为:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]
示例 2:

给定 matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

原地旋转输入矩阵,使其变为:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

解题思路:

以[  [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12] [13, 14, 15, 16]  ] 为例,将数组分为内外两层,1所在的位置为(tR,tC), 16所在的位置为(dR,dC)。我们先将最外层的进行旋转后,依次向里,就可以将整个矩阵旋转;那么问题来了,该怎么进行旋转呢?

根据tR,tC,dR,dC 还有一个索引i ,就可以进行旋转; (tR,tC+i)为从左到右的索引,(tR+i,dC)为从上到下的索引,可以试着自己推一下从右到左和从上到下的索引。

### 力扣(LeetCode)第48题:旋转图像的C++解决方案 #### 方法一:矩阵转置 + 行翻转 此方法的核心思想是先将矩阵沿主对角线进行转置操作,然后再逐行反转每行中的元素。这种方法的时间复杂度为 \(O(n^2)\),其中 \(n\)矩阵的边长;由于不需要额外的空间存储数据,因此其空间复杂度为 \(O(1)\)[^2]。 以下是具体的实现代码: ```cpp class Solution { public: void rotate(vector<vector<int>>& matrix) { int n = matrix.size(); // Step 1: Transpose the matrix (swap elements across diagonal) for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { // Start from i+1 to avoid redundant swaps swap(matrix[i][j], matrix[j][i]); } } // Step 2: Reverse each row of the transposed matrix for (int i = 0; i < n; ++i) { reverse(matrix[i].begin(), matrix[i].end()); } } }; ``` 上述代码通过两次遍历实现了原地修改的功能。 --- #### 方法二:一次性旋转四个位置 该方法基于观察到每次旋转实际上是将四个特定的位置上的数值互换这一特性来完成整个矩阵旋转过程。具体来说,在外层循环控制当前处理的是哪一层环形结构时,内层循环负责交换这些环内的相应单元格值[^3]。 下面是采用这种方式编写的程序版本之一: ```cpp class Solution { public: void rotate(vector<vector<int>>& matrix) { int len = matrix.size(); int len1 = (len + 1) / 2; int len2 = len - len1; for (int i = 0; i < len1; ++i) { for (int j = 0; j < len2; ++j) { int temp = matrix[i][j]; matrix[i][j] = matrix[len - 1 - j][i]; matrix[len - 1 - j][i] = matrix[len - 1 - i][len - 1 - j]; matrix[len - 1 - i][len - 1 - j] = matrix[j][len - 1 - i]; matrix[j][len - 1 - i] = temp; } } } }; ``` 这段代码同样满足题目要求不分配新的二维数组来进行旋转的操作条件,并且保持了时间和空间效率的要求. --- ### 总结 两种不同的算法都可以有效地解决这个问题。第一种方式更加直观易懂,而第二种则更贴近实际旋转的本质逻辑。无论选用哪种方案都需要特别注意边界情况以及索引计算准确性等问题以确保最终结果正确无误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值