相关、卷积(线性卷积、圆周卷积、三者的等价)

本文详细介绍了线性卷积和圆周卷积的概念,包括图解分析、矩阵相乘实现及频域点乘实现。讨论了两者之间的等价性,并阐述了卷积定理在时域和频域的应用。提供了实例来展示不同方法的卷积计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【 1. 相关 】

  • 相关性 表示一个信号平移 τ \tau τ或m 之后与另一个信号或者与原信号本身的 相似程度。
  • 相关函数是关于平移量的一个函数,被积分变量是时间 t。
  • 复数信号在做相关的时候,其中一个信号要取共轭Matlab 内置相关函数 xcorr(a,b) 是对第2个信号 b 取共轭

1.1 自相关

  • 自相关 (函数) :一个信号平移 τ \tau τ 或 m 之后与原信号的 相似程度/相关性。
  • 不发生延迟(即 τ = 0 \tau=0 τ=0 m = 0 m=0 m=0)时,信号的自相关值达到最大。
    连续自相关: R x x ( τ ) = ∫ − ∞ + ∞ x ( t ) x ∗ ( t − τ ) d t 连续自相关:R_{xx}(\tau)=\int_{-\infty}^{+\infty}x(t)x^*(t-\tau)dt 连续自相关:Rxx(τ)=+x(t)x(tτ)dt
    离散自相关: R x x ( m ) = ∑ n = − ∞ + ∞ x ( n ) x ∗ ( n − m ) 离散自相关:R_{xx}(m)=\sum_{n=-\infty}^{+\infty}x(n)x^*(n-m) 离散自相关:Rxx(m)=n=+x(n)x(nm)

1.2 互相关

  • 互相关 (函数) :一个信号平移 τ \tau τ或m 之后与另一个信号的 相似程度/相关性。
  • 互相关是有顺序的 ,即 R x y ( m ) ≠ R y x ( m ) R_{xy}(m)\neq R_{yx}(m) Rxy(m)=Ryx(m) R x y ( τ ) ≠ R y x ( τ ) R_{xy}(\tau)\neq R_{yx}(\tau) Rxy(τ)=Ryx(τ)
    连续互相关: R x y ( τ ) = ∫ − ∞ + ∞ x ( t ) y ∗ ( t − τ ) d t 连续互相关:R_{xy}(\tau)=\int_{-\infty}^{+\infty}x(t)y^*(t-\tau)dt 连续互相关:Rxy(τ)=+x(t)y(tτ)dt
    离散互相关: R x y ( m ) = ∑ n = − ∞ + ∞ x ( n ) y ∗ ( n − m ) 离散互相关:R_{xy}(m)=\sum_{n=-\infty}^{+\infty}x(n)y^*(n-m) 离散互相关:Rxy(m)=n=+x(n)y(nm)

1.3 相关的实现

xcorr(x,x) % 信号x的自相关
xcorr(x,y) % 信号x和信号y的互相关
  • 实例
    求 a 和 b 的互相关。
if 1
    a =  [4+3i 5+4i 6+5i 7+6i];
    b =  [1+2i 2+3i 3+4i 4+5i];
    xcorr(a,b)
    sum(a.*conj(b))    
    sum(a.*conj([0    1+2i 2+3i 3+4i]))
    sum(a.*conj([0    0    1+2i 2+3i]))
    sum(a.*conj([0    0    0    1+2i]))
end

在这里插入图片描述

【 2. 卷积 】

2.1 线性卷积

  • 线性卷积 是关于 时间 t 的一个函数,被积分变量是延时量 τ \tau τ
  • 线性卷积具有对称性 f ( n ) ∗ g ( n ) = g ( n ) ∗ f ( n ) f(n)*g(n)=g(n)*f(n) f(n)g(n)=g(n)f(n)
  • 连续线性卷积
    连续线性卷积: f ( t ) ∗ g ( t ) = ∫ − ∞ + ∞ f ( τ ) g ( t − τ ) d τ 连续线性卷积:f(t)*g(t)=\int_{-\infty}^{+\infty}f(\tau)g(t-\tau)d\tau 连续线性卷积:f(t)g(t)=+f(τ)g(tτ)dτ
  • 离散线性卷积
    f(n) 的长度为 P,g(n) 的长度为 Q,则 线性卷积 f ( n ) ∗ g ( n ) f(n)*g(n) f(n)g(n) 结果的长度 L=P+Q-1
    离散线性卷积: f ( n ) ∗ g ( n ) = ∑ k = 0 L − 1 f ( k ) g ( n − k ) = ∑ k = 0 L − 1 g ( k ) f ( n − k ) = g ( n ) ∗ f ( n ) 离散线性卷积:f(n)*g(n)=\sum\limits_{k=0}^{L-1}f(k)g(n-k)=\sum\limits_{k=0}^{L-1}g(k)f(n-k)=g(n)*f(n) 离散线性卷积:f(n)g(n)=k=0L1f(k)g(nk)=k=0L1g(k)f(nk)=g(n)f(n)

2.1.1 图解分析

  • 假设 f(n) 和 g(n) 如下图所示:
    f(n)=[3,1,4,5],n=0,1,2,3
    g(n)=[1,2,3],n=0,1,2
    在这里插入图片描述
  • 将 g(n) 和 h(n) 变换坐标为 g(k) 和 f(k)。 g(k) 翻转为 g(-k),再向右滑动 n 变为 g(-(k-n))=g(n-k),然后将对应相同位置的 g(n-k) 和 f(k) 相乘,最后将所有的乘积结果求和得到卷积结果 g ( n ) ∗ f ( n ) g(n)*f(n) g(n)f(n)
    y(0)=1x3+2x0+3x0=3
    y(1)=1x1+2x3+3x0=7
    y(2)=1x4+2x1+3x3=15
    y(3)=1x5+2x4+3x1=16
    y(4)=1x0+2x5+3x4=22
    y(5)=1x0+2x0+3x5=15
    在这里插入图片描述

2.1.2 矩阵相乘实现线性卷积

  • 假设求信号 R(长度为P) 和信号 G(长度为Q) 的 线性卷积,则将两个信号都尾补零到长度 L(L=P+Q-1),然后按照如下矩阵相乘的方式进行线性卷积的运算。

{ r 1 0 0 ⋯ 0 r 2 r 1 0 ⋯ 0 r 3 r 2 r 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ r L r L − 1 ⋯ r 2 r 1 } × { h 1 h 2 h 3 ⋮ h L } \begin{Bmatrix}r_1&0&0&\cdots&0\\ r_2&r_1&0&\cdots&0\\ r_3&r_2&r_1&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ r_L&r_{L-1}&\cdots& r_2&r_1\end{Bmatrix}\times \begin{Bmatrix} h_1\\h_2\\h_3\\\vdots\\h_L \end{Bmatrix} r1r2r3rL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MR_Promethus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值