文章目录
【 1. 相关 】
- 相关性 表示一个信号平移 τ \tau τ或m 之后与另一个信号或者与原信号本身的 相似程度。
- 相关函数是关于平移量的一个函数,被积分变量是时间 t。
- 复数信号在做相关的时候,其中一个信号要取共轭 ,Matlab 内置相关函数 xcorr(a,b) 是对第2个信号 b 取共轭 。
1.1 自相关
- 自相关 (函数) :一个信号平移 τ \tau τ 或 m 之后与原信号的 相似程度/相关性。
- 不发生延迟(即 τ = 0 \tau=0 τ=0 或 m = 0 m=0 m=0)时,信号的自相关值达到最大。
连续自相关: R x x ( τ ) = ∫ − ∞ + ∞ x ( t ) x ∗ ( t − τ ) d t 连续自相关:R_{xx}(\tau)=\int_{-\infty}^{+\infty}x(t)x^*(t-\tau)dt 连续自相关:Rxx(τ)=∫−∞+∞x(t)x∗(t−τ)dt
离散自相关: R x x ( m ) = ∑ n = − ∞ + ∞ x ( n ) x ∗ ( n − m ) 离散自相关:R_{xx}(m)=\sum_{n=-\infty}^{+\infty}x(n)x^*(n-m) 离散自相关:Rxx(m)=n=−∞∑+∞x(n)x∗(n−m)
1.2 互相关
- 互相关 (函数) :一个信号平移 τ \tau τ或m 之后与另一个信号的 相似程度/相关性。
- 互相关是有顺序的 ,即 R x y ( m ) ≠ R y x ( m ) R_{xy}(m)\neq R_{yx}(m) Rxy(m)=Ryx(m) 或 R x y ( τ ) ≠ R y x ( τ ) R_{xy}(\tau)\neq R_{yx}(\tau) Rxy(τ)=Ryx(τ) 。
连续互相关: R x y ( τ ) = ∫ − ∞ + ∞ x ( t ) y ∗ ( t − τ ) d t 连续互相关:R_{xy}(\tau)=\int_{-\infty}^{+\infty}x(t)y^*(t-\tau)dt 连续互相关:Rxy(τ)=∫−∞+∞x(t)y∗(t−τ)dt
离散互相关: R x y ( m ) = ∑ n = − ∞ + ∞ x ( n ) y ∗ ( n − m ) 离散互相关:R_{xy}(m)=\sum_{n=-\infty}^{+\infty}x(n)y^*(n-m) 离散互相关:Rxy(m)=n=−∞∑+∞x(n)y∗(n−m)
1.3 相关的实现
xcorr(x,x) % 信号x的自相关
xcorr(x,y) % 信号x和信号y的互相关
- 实例
求 a 和 b 的互相关。
if 1
a = [4+3i 5+4i 6+5i 7+6i];
b = [1+2i 2+3i 3+4i 4+5i];
xcorr(a,b)
sum(a.*conj(b))
sum(a.*conj([0 1+2i 2+3i 3+4i]))
sum(a.*conj([0 0 1+2i 2+3i]))
sum(a.*conj([0 0 0 1+2i]))
end
【 2. 卷积 】
2.1 线性卷积
- 线性卷积 是关于 时间 t 的一个函数,被积分变量是延时量 τ \tau τ 。
- 线性卷积具有对称性 : f ( n ) ∗ g ( n ) = g ( n ) ∗ f ( n ) f(n)*g(n)=g(n)*f(n) f(n)∗g(n)=g(n)∗f(n)。
- 连续线性卷积
连续线性卷积: f ( t ) ∗ g ( t ) = ∫ − ∞ + ∞ f ( τ ) g ( t − τ ) d τ 连续线性卷积:f(t)*g(t)=\int_{-\infty}^{+\infty}f(\tau)g(t-\tau)d\tau 连续线性卷积:f(t)∗g(t)=∫−∞+∞f(τ)g(t−τ)dτ - 离散线性卷积
f(n) 的长度为 P,g(n) 的长度为 Q,则 线性卷积 f ( n ) ∗ g ( n ) f(n)*g(n) f(n)∗g(n) 结果的长度 L=P+Q-1 。
离散线性卷积: f ( n ) ∗ g ( n ) = ∑ k = 0 L − 1 f ( k ) g ( n − k ) = ∑ k = 0 L − 1 g ( k ) f ( n − k ) = g ( n ) ∗ f ( n ) 离散线性卷积:f(n)*g(n)=\sum\limits_{k=0}^{L-1}f(k)g(n-k)=\sum\limits_{k=0}^{L-1}g(k)f(n-k)=g(n)*f(n) 离散线性卷积:f(n)∗g(n)=k=0∑L−1f(k)g(n−k)=k=0∑L−1g(k)f(n−k)=g(n)∗f(n)
2.1.1 图解分析
- 假设 f(n) 和 g(n) 如下图所示:
f(n)=[3,1,4,5],n=0,1,2,3
g(n)=[1,2,3],n=0,1,2
- 将 g(n) 和 h(n) 变换坐标为 g(k) 和 f(k)。 g(k) 翻转为 g(-k),再向右滑动 n 变为 g(-(k-n))=g(n-k),然后将对应相同位置的 g(n-k) 和 f(k) 相乘,最后将所有的乘积结果求和得到卷积结果 g ( n ) ∗ f ( n ) g(n)*f(n) g(n)∗f(n)。
y(0)=1x3+2x0+3x0=3
y(1)=1x1+2x3+3x0=7
y(2)=1x4+2x1+3x3=15
y(3)=1x5+2x4+3x1=16
y(4)=1x0+2x5+3x4=22
y(5)=1x0+2x0+3x5=15
2.1.2 矩阵相乘实现线性卷积
- 假设求信号 R(长度为P) 和信号 G(长度为Q) 的 线性卷积,则将两个信号都尾补零到长度 L(L=P+Q-1),然后按照如下矩阵相乘的方式进行线性卷积的运算。
{ r 1 0 0 ⋯ 0 r 2 r 1 0 ⋯ 0 r 3 r 2 r 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ r L r L − 1 ⋯ r 2 r 1 } × { h 1 h 2 h 3 ⋮ h L } \begin{Bmatrix}r_1&0&0&\cdots&0\\ r_2&r_1&0&\cdots&0\\ r_3&r_2&r_1&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ r_L&r_{L-1}&\cdots& r_2&r_1\end{Bmatrix}\times \begin{Bmatrix} h_1\\h_2\\h_3\\\vdots\\h_L \end{Bmatrix} ⎩ ⎨ ⎧r1r2r3⋮rL