数字三角形2——含绝对值的移动类DP

本博客探讨了一道编程题目,涉及一个数字三角形,要求找出从顶部到底部路径,使得路径上数字绝对值之和最大。由于题目加入了绝对值元素,原有的解决方案不再适用。博主提出问题在于原代码只考虑了绝对值大小,未考虑数字本身正负。解决方案是分别计算最大值和最小值路径,最后比较绝对值。示例代码显示了这一改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

描述
一个数字三角宝塔。
设数字三角形中的数字为绝对值不超过1000的整数。
现规定从最顶层走到最底层,每一步可沿向下或右斜线向下走。
求解从最顶层走到最底层的一条路径,使得沿着该路径所经过的数字的总和的绝对值最大,输出最大值

输入
输入数据的第1 行是数字三角形的行数n,1<=n<=1000。
接下来n行是数字三角形各行中的数字。所有数字都小于1000。

输出
程序运行结束时,将计算出的最大值输出。

样例
输入
4
1
3 2
4 10 1
4 3 2 20
输出
24

这道题只是数字三角形的升级版,在原题中加入了绝对值,如果再用原来的判断就会有问题,这道题主要就是来解决这个问题。

如普通的的数字三角形还没有弄懂请看这篇博客:网址

所以随即我们的第一反应就是给原来的代码在计算中加一个绝对值,细微处理一下即可。
如下面这篇代码:

#include <bits/stdc++.h>
using namespace std;

int n,a[110][110],dp[110][110],ans;


int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=i;j++){
			cin>>a[i][j];
		}
	}
	dp[1][1]=a[1][1];
	
	for(int i=2;i<=n;i++){
		for(int j=1;j<=i;j++){
			if(abs(dp[i-1][j]+a[i][j])>abs(dp[i-1][j-1]+a[i][j])){
				dp[i][j]=dp[i-1][j]+a[i][j];
			}else{
				dp[i][j]=dp[i-1][j-1]+a[i][j];
			}
			
		}
	}
	
	for(int i=1;i<=n;i++){
		if(abs(dp[n][i])>abs(ans)){
			ans=dp[n][i];
		}
	}
	
	cout<<ans;
	return 0;
}

但是,我们这样做为什么爆零了呢,因为这样的状态转移方程他的设定就是每次取绝对值最大的,但像下面这组数据就过不了在这里插入图片描述
上一篇代码的答案就会是1,而这个数据答案显然是5。

于是,我们开始深入思考,上篇代码的问题出在只考虑绝对值大小,而没有关注这个数本身的大小,我们通过负数求最大绝对值就一直求最小值,我们通过正数求最大绝对值就一直求最大值,所以我们可以分别来算最大值和最小值,最后再来比较其绝对值大小。

代码如下:

#include<bits/stdc++.h>
using namespace std;
int n;
int a[1100][1100],dp[3][1100][1100];//其实dp第一维大小只需要二,求最大值和最小值, 这里为了方便观看,用1和2来表示 
int main() {
	cin>>n;
	for(int i=1; i<=n; i++)
		for(int j=1; j<=i; j++)
			cin>>a[i][j];
	for(int i=0; i<=n; i++)
		for(int j=0; j<=n; j++)
			if(j==0||j>i)dp[1][i][j]=-1e5,dp[2][i][j]=1e5;
	dp[1][1][1]=dp[2][1][1]=a[1][1];
	for(int i=2; i<=n; i++)
		for(int j=1; j<=i; j++)
			dp[1][i][j]=a[i][j]+max(dp[1][i-1][j],dp[1][i-1][j-1]),
			dp[2][i][j]=a[i][j]+min(dp[2][i-1][j],dp[2][i-1][j-1]);
	int ans1=-1e9,ans2=1e9;
	for(int i=1; i<=n; i++)
		ans1=max(ans1,dp[1][n][i]),
		ans2=min(ans2,dp[2][n][i]);
	printf("%d\n",max(abs(ans1),abs(ans2)));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值