对声音转换——基频和韵律特征(Pitch and Prosody Features)方法详解
目录
- 引言
- 声音转换概述
- 基频(Pitch)特征
- 3.1 基频的定义
- 3.2 基频的提取
- 3.3 基频在声音转换中的作用
- 韵律(Prosody)特征
- 4.1 韵律的定义
- 4.2 韵律特征的组成
- 4.3 韵律在声音转换中的作用
- 基频和韵律特征在声音转换中的方法
- 5.1 特征提取
- 5.2 特征转换
- 5.3 特征合成
- 数学模型与公式
- 6.1 基频建模
- 6.2 韵律建模
- 6.3 转换函数
- 实现代码及解读
- 总结
引言
声音转换(Voice Conversion, VC)技术旨在改变一个说话者的语音特征,使其听起来像另一个目标说话者,同时保持原有的语义内容。基频和韵律特征作为声音的关键要素,在声音转换中扮演着重要角色。本文将详细介绍基于基频和韵律特征的声音转换方法,涵盖其理论基础、数学模型以及实现细节。
声音转换概述
声音转换技术涉及多种特征的处理,包括声道特征(如梅尔频率倒谱系数MFCC)、基频(Pitch)、韵律特征(Prosody)等。传统方法多基于统计模型,如高斯混合模型(GMM)、隐马尔可夫模型(HMM),近年来,深度学习方法如神经网络也被广泛应用。
基频(Pitch)特征
3.1 基频的定义
基频(Pitch)是指声音的基本频率,通常用赫兹(Hz)表示。它决定了声音的高低,是衡量声音音调的重要参数。
3.2 基频的提取
基频的提取方法主要包括时域法和频域法。常用的算法有自相关法、快速傅里叶变换(FFT)法和YIN算法。
自相关函数定义为:
R ( τ ) = ∑ n = 0 N − 1 x ( n ) ⋅ x ( n + τ ) R(\tau) = \sum_{n=0}^{N-1} x(n) \cdot x(n+\tau) R(τ)=n=0∑N−1x(n)⋅x(n+τ)
其中, x ( n ) x(n) x(n)为时间序列信号, τ \tau τ为延迟。
基频 f 0 f_0 f0 可通过找到自相关函数的第一个峰值位置 τ 0 \tau_0 τ0,然后计算:
f 0 = F s τ 0 f_0 = \frac{F_s}{\tau_0} f0=