121. 买卖股票的最佳时机

本文介绍了使用动态规划算法来解决寻找股票买卖最佳时机的问题。通过一个二维数组dp表示持有和不持有股票的状态,初始化dp数组,然后根据递推公式更新每一天的持有和不持有状态。最终返回dp数组中最后一个元素的不持有状态,即为最大收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

121. 买卖股票的最佳时机

在这里插入图片描述

思路

  • dp是个二维数组,表示第i天持有和不持有的最高收益。数组初始化,对于第一天就入股的资产为 -price[0],不买的为0;后面递推公式,对于持有和不持有的分别两种情况;
  • 持有的递推,继续持有,其收益和昨天持有的一样。今天刚持有,收益为 -price[i]
  • 不持有的递推,继续不持有,收益和昨天一样,今天刚卖出,今天的收益为昨天持有的收益加上今天卖出的价格 ,即 dp[i-1][0] + prices[i]
class Solution {
    public int maxProfit(int[] prices) {
        if(prices.length == 1) return 0;
        int size = prices.length;
        int[][] dp = new int[size][2];
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1;i < size;i++){
            dp[i][0] = Math.max(dp[i-1][0],-prices[i]);
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] + prices[i]);
        }
        return dp[size-1][1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值