- 博客(509)
- 收藏
- 关注

原创 改进系列(14):基于Swin Transformer的SAM交互式图像分割方法研究:腹部13器官分割
本文提出了一种基于Swin Transformer架构的交互式图像分割方法,通过引入点提示机制实现用户引导的精确分割。该方法采用编码器-解码器结构,在编码阶段利用Swin Transformer的层次化特征提取能力,在解码阶段结合跳跃连接恢复空间细节。实验结果表明,该方法在标准数据集上取得了较高的分割精度,同时支持用户通过点击交互优化分割结果。本文详细介绍了网络架构设计、训练策略以及交互式推理系统的实现。关键词:交互式图像分割;深度学习;点提示;医学图像分析。
2025-06-19 16:54:34
992
2

原创 改进系列(1):TransUnet结合SAM box改进对MICCAI FLARE腹部13器官图像分割
本章尝试将TransUnet和SAM结合,以期望达到更换的模型TransUnet作为医学图像分割的基准,在许多数据集上均取得了很好的效果,然而最近SAM大模型的兴起,图像分割似乎有了新的方向关于图像分割项目、sam模型复现参考本人其他专栏,这里之作简单介绍TransUnet是一个专门为医学图像分割任务设计的深度学习模型。它是一种卷积神经网络(CNN),采用基于变压器的架构。TransUnet在具有相应分割掩模的大型医学图像数据集上进行训练,以学习如何从输入图像中准确分割器官、病变或其他结构。
2024-10-12 16:12:44
1612

原创 Unet 实战分割项目、多尺度训练、多类别分割
之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间。
2024-02-05 21:38:35
7978
21
原创 VGG 改进:融合CNN与Transformer的VGG模型
本文提出了一种结合VGG16 CNN和Vision Transformer的混合架构。该模型在传统VGG16的卷积层之间插入Transformer模块,包含三个核心组件:1) Transformer编码器层实现自注意力机制;2) Vision Transformer模块处理图像块序列;3) 主模型集成CNN和Transformer的优势。该架构既能提取局部特征,又能建模全局关系,通过可学习的位置编码和残差连接实现高效特征融合。实验表明,这种混合设计在保持CNN优势的同时,增强了模型的全局建模能力,为计算机视
2025-07-27 11:06:30
24
原创 SwinTransformer 改进:稀疏化注意力机制(Sparse Attention)
本文提出了一种改进的稀疏注意力机制(SparseAttention),通过保留top-k注意力权重显著降低了Transformer模型的计算复杂度。该方法针对SwinTransformer架构实现,包含三个关键技术:1) 稀疏注意力层仅计算和保留top-k权重,减少计算量;2) 相对位置编码保持位置感知能力;3) 自动替换机制可将原始注意力层全部替换为稀疏版本。实验表明,该方法在保持模型性能的同时提升了计算效率,特别适用于高分辨率图像处理等场景。代码实现了完整的稀疏注意力模块和模型替换流程,为Transfo
2025-07-24 15:38:08
123
原创 梯度下降法详解:优化算法的核心与实现
本文系统介绍了机器学习中的核心优化算法——梯度下降法。该方法通过沿目标函数梯度反方向迭代调整参数,寻找最优解。文章详细解析了其工作原理(如盲人下山类比)、数学推导(以二次函数为例)和实现步骤,并讨论了学习率等关键参数的影响。通过Python代码实例展示了该方法在3D数据拟合中的应用,直观呈现了损失函数动态变化和参数优化过程。梯度下降法因其通用性强、计算高效等特点,成为深度学习等领域的基石算法。
2025-07-24 12:55:17
598
原创 甲状腺结节TI-RADS分类的多目标分类头任务深度学习模型评估报告
本研究开发了一个基于ResNet50的多任务深度学习模型,用于甲状腺结节的TI-RADS分类。模型同时预测成分、回声、形状、边缘和强回声灶五个关键特征,并计算最终TI-RADS等级。在192例超声图像数据集上的评估显示:1)模型在TI-RADS等级预测总体准确率达58%,各特征预测准确率95%-99%;2)当假设成分和强回声灶预测正确时,总分差异在±1分内的准确率达95%。该研究为甲状腺结节的标准化评估提供了有效工具,具有临床应用价值。完整代码可通过CSDN下载获取。
2025-07-18 12:13:58
150
原创 具身智能与人形机器人:技术革命重塑未来
2025年,具身智能(Embodied AI)首次被写入,标志着这一技术正式成为国家战略级未来产业的核心方向。具身智能的核心在于赋予人工智能“物理身体”,使其通过多模态感知、实时决策和环境交互,实现从虚拟智能向实体智能的跨越。 作为具身智能的理想载体,人形机器人正在全球范围内迎来爆发式落地——从工厂车间到救援现场,从马拉松赛道到家庭客厅,一场“碳硅共生”的文明图景正加速展开。
2025-07-06 14:33:17
2123
原创 SwinTransformer 改进:小波+注意力模块(Wavelet-Guided Attention)
本文提出了一种结合Swin Transformer和小波引导注意力模块(WGAM)的创新模型架构。WGAM通过Haar小波分解将特征图分为四个子带(LL,LH,HL,HH),并分别应用通道注意力和空间注意力机制,同时为各子带分配可学习权重。该模块被集成到Swin Transformer的patch embedding层之后,在不显著增加计算复杂度的情况下,实现了多尺度特征提取和自适应特征增强。实验表明,这种混合架构特别适合高分辨率图像分类、医学图像分析和遥感图像处理等任务。模型采用模块化设计,可灵活集成到其
2025-06-21 10:24:37
288
原创 基于EfficientNet的手势识别计算器系统设计与实现
本文提出了一种基于EfficientNet的手势识别计算器系统,通过深度学习技术实现了1-9手势数字的准确识别和基本算术运算。系统采用EfficientNet-B0网络架构,经过迁移学习和微调训练,在测试集上达到99%的识别准确率。PyQt5构建的图形界面支持用户上传手势图片并执行加减乘除运算,结果实时显示。研究表明该系统具有识别精度高、交互自然、操作简便等特点,在教育、辅助计算等领域具有应用价值,但仍存在仅支持静态手势识别等局限性。
2025-06-21 08:26:34
71
原创 UNet 改进:结合CAM注意力与DLKA注意力的改进UNet
本文提出一种改进的UNet网络架构,通过引入通道注意力模块(CAM)和动态大核注意力模块(DLKA)显著提升特征提取能力。该网络采用经典的编码器-解码器结构,核心创新点包括:1)Triplet_DoubleConv模块整合常规卷积、CAM和DLKA;2)CAM模块通过双路径池化学习通道重要性;3)DLKA模块使用7×7深度可分离卷积捕获大范围空间关系。网络特别适用于医学图像分割等精细任务,在保持UNet优势的同时增强了对长距离依赖和重要特征的捕捉能力。完整PyTorch实现展示了模块化设计,便于迁移应用。
2025-06-19 16:43:15
173
原创 EfficientNet 改进:StripCGLU模块的创新与应用
本文提出了一种改进的EfficientNet-b0模型,核心创新是通过引入StripCGLU模块来提升网络性能。StripCGLU结合了水平/垂直条带卷积和GLU激活机制,具有参数效率高、计算量少的优点。改进策略包括选择性替换部分MBConv为StripCGLU模块(每隔3个块插入),同时保留早期层结构。测试表明该模型适用于移动端视觉任务,在保持效率的同时提升性能。代码实现包含模块定义、模型构建及测试部分,展示了如何通过精心设计的模块改进现有网络架构。
2025-06-17 17:42:50
44
原创 SwinTransformer 改进:结合DLKA与SSPP的模型架构
本文提出了一种创新的计算机视觉模型架构,结合Swin Transformer、动态大核注意力(DLKA)和空间金字塔池化(SSPP)模块。该设计融合了Transformer的全局建模能力与CNN的局部特征提取优势,其中DLKA模块通过通道和空间注意力增强局部特征提取,SSPP模块实现多尺度特征融合。模型在Swin Transformer基础上插入这两个模块,形成兼顾全局-局部特征表达和多尺度处理的混合架构。实验验证表明,该模型适用于需要同时关注细粒度细节和全局上下文的视觉任务,为计算机视觉模型设计提供了新的
2025-06-17 13:27:09
176
原创 ShuffleNet 改进:与通道注意力机制(CAM)的结合实现
本文提出了一种改进的ShuffleNetV2模型,通过集成通道注意力机制(CAM)增强特征表示能力。CAM模块采用双分支结构(平均池化+最大池化)学习通道权重,并使用带压缩比的MLP减少参数量。模型保留了ShuffleNetV2的轻量特性,支持预训练权重加载,通过维度转换技巧将CAM无缝集成到网络中。实验验证表明,该方法在保持高效性的同时提升了模型性能,为轻量级网络设计提供了有效参考。代码开源,可直接应用于图像分类等任务。
2025-06-09 16:20:40
104
原创 改进系列(13):基于改进U-ResNet的脊椎医学图像分割系统设计与实现
本文提出一种改进的U-ResNet医学图像分割系统,通过融合残差连接、通道注意力机制和空间金字塔池化模块,显著提升分割精度。系统采用端到端深度学习框架,实现数据预处理、模型训练到可视化分析全流程自动化。实验表明,该方法平均DSC达0.92以上,优于传统分割网络,并提供友好GUI界面支持交互式操作。改进的网络架构包含多级残差块编码器、多尺度瓶颈层和带注意力机制的解码器,配合联合损失函数优化,有效解决医学图像分割中的特征提取不足和小目标分割难题。系统还实现了六种评估指标计算和多种可视化分析功能。
2025-06-09 13:42:51
790
原创 MobileNet 改进:基于MobileNetV2和SSPP的图像分类
本文介绍了一种结合MobileNetV2和空间金字塔池化(SSPP)的轻量级图像分类模型。该模型采用MobileNetV2作为特征提取器,并集成了自定义SSPP模块,通过多尺度池化增强特征表达能力。模型结构包含特征提取、SSPP处理和线性分类三个部分,其中SSPP支持可配置的池化层级(默认1×1,2×2,4×4)。这种设计既保持了MobileNetV2的高效特性,又提升了模型对不同尺寸特征的适应能力。测试代码验证了模型可处理224×224输入并输出正确维度的分类结果。该实现为计算机视觉任务提供了一种平衡性能
2025-06-06 09:10:32
89
原创 ResUNet 改进:融合DLKA注意力机制
本报告详细分析了一个名为UResnet的深度学习网络架构,该网络结合了U-Net的编码器-解码器结构、ResNet的残差连接以及新型的Dilated Large Kernel Attention(DLKA)注意力机制。该网络设计用于图像分割任务,通过多尺度特征提取和融合实现精确的像素级预测。
2025-06-05 14:29:39
77
原创 CentOS在vmware局域网内搭建DHCP服务器【踩坑记录】
本文记录了在CentOS系统上配置DHCP服务的完整流程:首先确保NAT模式联网,修改yum镜像源后安装DHCP服务;然后配置虚拟机网络为vmnet10(虚拟交换机模式),设置CentOS静态IP时需特别注意格式规范;接着编辑dhcpd.conf文件定义IP地址池(192.168.10.200-210)、网关和DNS;最后启动DHCP服务并设置防火墙规则。成功搭建后,Windows客户端切换为自动获取IP即可完成网络配置,通过/var/lib/dhcpd/dhcpd.leases文件可查看租约信息。全程重点
2025-06-04 18:19:32
1213
1
原创 基于深度学习(Unet和SwinUnet)的医学图像分割系统设计与实现:超声心脏分割
本文提出了一种基于深度学习的医学图像分割系统,采用U-Net和Swin-Unet两种网络架构,实现了高效的医学图像分割。系统包含完整的数据预处理、模型训练评估流程,并提供用户友好的图形界面。实验结果表明,该系统在CT等医学图像分割任务中表现优异,Swin-Unet架构性能优于传统U-Net,窗宽窗位调整显著改善CT图像分割效果。系统具有模块化设计、易扩展等特点,为临床诊断提供了有效的计算机辅助工具。
2025-06-04 09:56:29
329
原创 基于人工智能算法实现的AI五子棋博弈
本项目开发了一个基于Python和Pygame的五子棋游戏系统,包含三种对战模式:人人对战、人机对战和AI对战。系统采用模块化设计,包括棋盘管理、AI决策和主程序三大模块。AI算法基于博弈树搜索和评估函数,实现了棋型识别、Alpha-Beta剪枝、迭代加深搜索等优化技术,能够提供较强对战能力。系统支持自定义游戏模式和AI参数,具有清晰的用户界面和交互设计。未来可进一步优化算法性能并扩展功能,如增加难度选择、网络对战等。项目代码结构合理,便于后续开发和改进。
2025-06-03 15:26:16
1219
原创 NLP实战(5):基于LSTM的电影评论情感分析模型研究
本研究提出了一种基于双向LSTM的深度学习模型,用于电影评论的细粒度情感分类(5分类)。模型采用词嵌入层(100维)、双向LSTM层(2层256维)和全连接层结构,在标准数据集上通过5折交叉验证评估,平均准确率达到55.52%。实验结果显示模型能够有效区分负面、中性到正面的情感表达,其中中性情感与"有点积极/负面"的区分存在改进空间。研究提供了完整的数据预处理流程、模型架构和训练策略,代码已实现模块化,便于复现。未来可结合预训练词向量和注意力机制进一步提升性能。
2025-06-03 13:27:38
1217
原创 U-ResNet 改进:集成CoordinateAttention(坐标注意力)
本文介绍了一种名为UResNet的混合神经网络结构,它结合了ResNet的残差连接、UNet的编码-解码架构以及坐标注意力机制。该网络通过BasicBlock/BottleNeck构建块实现特征提取,采用VGGBlock进行卷积处理,并引入CoordinateAttention模块增强位置感知。在编码阶段逐层下采样,解码阶段通过上采样和跳跃连接恢复分辨率,最终输出分割结果。代码实现展示了完整的网络架构和数据处理流程,测试结果表明该模型能有效处理224×224的输入图像。这种创新组合利用了不同网络的优点,为图
2025-06-02 11:12:45
81
原创 U-ResNet 改进:集成特征金字塔网络(FPN)
本文介绍了UResNet模型的设计与实现,该模型融合了U-Net的编码器-解码器结构、ResNet的残差连接以及特征金字塔网络(FPN)的多尺度特征提取能力。模型包含Up模块、BasicBlock、BottleNeck、VGGBlock和FPN等核心组件,通过编码器下采样、解码器上采样与特征融合,最终输出分割结果。测试表明模型能正确处理256×256输入并输出对应尺寸的分割图。UResNet兼具U-Net的信息保留能力、ResNet的梯度缓解特性以及FPN的多尺度优势,为图像分割任务提供了灵活高效的解决方案
2025-06-02 10:18:00
361
原创 DeepSeek:不同模式(v3、R1)如何选择?
三种模型对比:基础版为默认选项;V3在开放性和规范性文本生成任务中表现优于R1,但使用R1时不宜提供示例(其自主性强)。官方提供PromptLibrary提示语库,V3和R1各有专用提示语模板,例如可将DeepSeek转化为智能体的定制提示方案(150字)
2025-05-29 15:29:02
473
原创 改进系列(12):基于SAM交互式点提示的UNet腹部多脏器分割方法研究
本文提出了一种基于点提示机制的交互式UNet网络用于腹部多脏器医学图像分割。该方法在传统UNet基础上扩展输入通道,加入点提示信息,允许用户在推理阶段通过点击前景和背景区域提供交互指导。实验采用394例腹部CT图像训练,98例验证,最终在验证集上达到Dice系数0.9358和IoU 0.8805的优异性能。与全自动方法相比,该交互式分割方案更具灵活性,能有效修正边界模糊区域的分割错误,为临床医学图像分析提供了实用解决方案。
2025-05-27 10:02:06
750
原创 传输层:TCP协议详解
TCP协议摘要:TCP是一种面向字节流的可靠传输协议,其报文首部包含端口号、序号、确认号等关键字段。通过标记位(URG/ACK/SYN等)控制连接状态,利用窗口机制和校验和确保数据传输可靠性。支持紧急指针处理优先数据,采用自动重传(ARQ)和滑动窗口协议实现高效传输。接收窗口大小动态调整流量,选择确认选项优化重传机制。
2025-05-26 15:05:49
329
原创 ViT模型改进:基于双路径的多尺度特征融合
本文介绍了一种结合Vision Transformer (ViT) 和 ConvNeXt 的双路径深度学习模型,该模型通过多尺度处理和特征融合机制,在图像分类任务中表现出色。模型的核心组件包括多尺度模块和特征融合模块,分别用于捕获不同尺度的空间信息和自适应融合两种架构的特征。多尺度模块利用不同空洞率的卷积并行处理输入特征,而特征融合模块则通过注意力机制动态调整ViT和ConvNeXt特征的权重。双路径模型的设计充分发挥了ViT在全局特征捕获和ConvNeXt在局部特征提取上的优势,并通过预训练权重加速收敛。
2025-05-23 08:26:57
169
原创 插值算法 - 图像缩放插值QT
本文介绍了一个基于PyQt5和OpenCV的图像缩放插值演示工具的实现。该工具允许用户上传本地图片(PNG/JPG/JPEG格式),选择四种常见的插值方法(最近邻插值、双线性插值、双三次插值、区域像素关系插值),并通过滑块实时调整缩放比例(0.1倍到4.0倍),同时并排显示原始图像和缩放后的图像。工具的核心功能包括图像加载与显示、插值方法处理和缩放应用。代码结构清晰,主类ImageScalingGUI负责构建GUI界面和处理用户交互,核心函数apply_scaling根据用户选择的插值方法应用不同的Open
2025-05-22 18:04:18
316
原创 改进系列(11):基于TransUNet改进SA和特征金字塔注意力模块:心脏超声分割
TransUNet是一种结合了Transformer和U-Net架构的医学图像分割模型,它通过将Transformer的强大全局建模能力与U-Net的局部特征提取能力相结合,在医学图像分割任务中表现出色。
2025-05-14 15:43:37
1056
原创 DenseUnet 改进:结合RepHMS动态调整尺度模块
DenseUNet是一种创新的图像分割网络架构,结合了DenseNet的特征提取能力和U-Net的多尺度特征融合机制。其核心创新在于引入了RepHMS模块,该模块支持动态多尺度特征调整,能够根据目标尺寸灵活处理特征图。DenseUNet基于DenseNet-161构建,包含编码路径和解码路径,通过RepHMS模块在解码路径的每个阶段进行多尺度特征调整,并与编码路径的特征进行融合。网络还采用了密集跳跃连接,确保特征的有效传递和重用。DenseUNet支持任意输入通道数和可配置的输出类别数,适用于需要精确像素级
2025-05-14 07:30:00
85
原创 传输层:UDP协议
UDP(User Datagram Protocol,用户数据报协议)是一种无连接的传输层协议,适用于对实时性要求高但允许少量丢包的应用,如视频流和DNS查询。UDP报文由8字节的头部和可变长度的数据部分组成。头部包括源端口号、目的端口号、报文长度和校验和。校验和用于检测传输错误,计算时包括伪头部、UDP头部和数据部分。UDP的特点是无连接、不可靠和轻量级,适用于低延迟场景。示例报文展示了如何构造一个简单的UDP报文。
2025-05-13 19:40:35
462
原创 FCN改进:CBAM注意力机制增强FCN-ResNet50分割模型
本文介绍了一个结合CBAM(Convolutional Block Attention Module)注意力机制的FCN-ResNet50语义分割模型的实现。CBAM模块通过通道注意力和空间注意力机制,帮助模型聚焦于图像中的重要特征和区域,从而提高分割精度。代码首先实现了CBAM模块,接着在FCN-ResNet50模型的ResNet50骨干网络的四个层级后分别添加了CBAM模块,最后进行了前向传播测试。测试结果显示,模型能够输出5个类别的分割概率图。这种设计通过在不同层级添加注意力模块,捕捉不同尺度的特征,
2025-05-13 09:24:40
656
原创 网络层:ICMP协议
ICMP(Internet Control Message Protocol)是IP协议的一部分,用于发送差错报告和网络诊断信息。其报文格式包括类型和代码字段,用于标识不同的差错类型。常见的差错报告报文包括TTL过期、目标主机不可达和路由重定向。TTL过期表示数据包在传输过程中超过了生存时间;目标主机不可达表示无法找到目标网络的路由;路由重定向则指示更优的路由路径。此外,ping命令用于测试网络连通性,tracert命令用于追踪数据包路径,pathping命令结合了ping和tracert的功能,提供更详细
2025-05-12 18:14:53
230
原创 DeepSeek+Kimi实战:PPT制作教程
如下:生成完了,进行复制:如下:Kimi - 会推理解析,能深度思考的AI助手选择这里进行将deepseek生成的复制进去生成ppt可以选择模板,点生成即可如下:可以自行编辑或者直接下载下载即可:会自动在网页弹窗参考制作的ppt:【免费】人工智能授课ppt参考资源-CSDN文库
2025-05-08 17:49:25
462
原创 DeepSeek+即梦AI实战:图片制作教程
复制这里: 如下:即梦AI - 一站式AI创作平台点进这里复制即可:如下: 效果不能说差吧,相比之前自己的提示词,确实好了不少
2025-05-08 15:29:32
258
原创 第20章:深度学习图像分割实战之UNet与DeepLabV3的对比分析【脊椎分割实验】
本文实现了一个完整的图像分割项目框架,通过对比UNet和DeepLabV3两种经典网络,展示了不同架构在分割任务上的表现差异。项目提供了从数据预处理到结果可视化的完整流程,可以作为图像分割任务的开发模板。实验结果表明,没有绝对优越的模型,实际应用中需要根据具体任务需求和数据特点选择合适的架构。本文通过对比两种经典分割网络——UNet和DeepLabV3,分享一个完整的图像分割项目实现,包括数据预处理、模型训练、评估指标可视化和模型对比分析。可以自己将模型扩充多个,然后,这里填对应的json结果即可。
2025-05-07 10:20:14
1396
原创 opencv实战:银行卡卡号识别
在当今数字化时代,光学字符识别(OCR)技术变得越来越重要。本文将详细介绍如何使用来识别银行卡的卡号,并在原图上标注识别结果。
2025-05-06 18:46:33
899
原创 【C语言】推箱子小游戏
这是一个基于C语言实现的经典推箱子游戏,采用控制台字符界面进行交互。玩家通过WASD键控制角色推动箱子,目标是将所有箱子移动到指定点位。程序包含地图绘制、碰撞检测、胜利判断等完整游戏机制。
2025-05-06 16:14:31
290
原创 EfficientNet 改进:与Transformer结合的图像分类模型
这个实现将EfficientNet的高效特征提取能力与Transformer的强大序列建模能力相结合,主要包含以下几个核心组件:基础卷积模块:包括Swish激活函数和ConvBnAct组合模块MBConv模块:EfficientNet的核心构建块Squeeze-Excitation注意力机制:通道注意力模块Transformer分类头:替代传统全连接层的创新设计。
2025-05-04 12:38:12
132
DenseNet121,161,169,201等模型实现的迁移学习、自适应图像识别项目实战:天气状况图像分类
2025-06-25
深度学习数据集:自然天气状况图像分类【已划分训练集、测试集、字典文件、python数据可视化脚本】
2025-06-25
基于深度学习 Resnet 网络图像分类实战:驾驶员眼球状态图像分类
2025-06-25
深度学习数据集:驾驶员眼球状态检测图像分类【已划分训练集、测试集、字典文件、python数据可视化脚本】
2025-06-25
深度学习数据集:服装图像分类【已划分训练集、测试集、字典文件、python数据可视化脚本】
2025-06-25
Resnet 网络改进实战(在每个layer后加入CBAM模块实战):服装衣服图像分类
2025-06-25
基于VGG模型(vgg11、vgg13、vgg16等)实现的自适应迁移学习图像识别:服装图像分类
2025-06-25
闭路电视视频中的枪支和刀具检测图像目标检测数据【已标注,约7200张数据和标签,YOLO 标注格式】
2025-06-25
洪水区域图像语义分割数据集(约280张数据和标签,已处理完可以直接训练,2类别图像分割)
2025-06-23
ResUNet+SSPP+CAM+联合损失改进:洪水灾害图像分割数据集(2类图像分割任务)
2025-06-23
基于UNet与DeepLabV3的图像分割系统【训练、评估与可视化分析】自然灾害洪水区域分割、包含完整数据集和代码
2025-06-23
基于Swin Transformer的SAM点提示交互式图像分割系统源码
2025-06-23
甲状腺结节分析系统,基于超声图像和结节掩膜自动评估结节的临床特征,并按照ACR TI-RADS标准进行分类
2025-06-26
深度学习基于WGAM模块的Swin Transformer改进:多尺度特征融合与注意力机制在图像分类中的应用
2025-06-21
基于EfficientNet的手势识别计算器系统设计与实现
2025-06-19
医学图像数据集:腹部13类别器官图像语义分割数据集(约1100张数据和标签,已处理,多类别图像分割)
2025-06-19
深度学习基于PyTorch的UNet图像分割模型实现:双卷积与注意力机制结合的医学影像分析系统设计
2025-06-19
基于Swin Transformer的SAM交互式图像分割方法研究:腹部多器官医学图像分割
2025-06-19
深度学习数据集:芒果水果病害图像分类【已划分训练集、测试集、字典文件、python数据可视化脚本】
2025-06-17
无人机图像语义分割数据集(约1000张数据和标签,已处理完可以直接训练,2类别图像分割)
2025-06-17
基于Swin Transformer的SAM交互式图像分割方法研究:卫星视角下的城镇地面目标图像分割
2025-07-27
基于Unet实现的图像分割完整项目:遥感城镇地面信息图像分割 (送denseUnet分割代码)
2025-07-27
基于UNet、UNet++、UNet3+实现的遥感城市地面目标图像的分割项目,包含可视化QT推理界面【pytorch实现】
2025-07-27
基于ResUNet+SSPP+CAM+联合损失改进的完整图像分割项目、有效涨点!
2025-07-27
遥感城市图像语义分割数据集(约1000张数据和标签,已处理完可以直接训练,8类别图像分割)
2025-07-27
深度学习基于Transformer增强的VGG16卷积神经网络模型设计:图像分类任务中的特征提取与性能提升
2025-07-27
夜间交通车辆、行人图像目标检测数据【已标注,约9000张数据和标签,YOLO 标注格式】
2025-07-24
稀疏注意力机制改进的Swin Transformer模型
2025-07-24
轻量级网络MobileUnet实现的医学图像语义分割项目:TBI 病损区域分割
2025-07-19
基于深度学习的甲状腺结节多目标分类系统、已经训练完成、包含数据和代码
2025-07-15
医学图像分割数据:TBI(伤性脑损伤)MR图像切片分割【包含3个切面的切片数据、可视化代码、二值分割】
2025-07-15
伤性脑损伤(TBI)MR图像语义分割数据集(约11000张数据和标签,已处理完可以直接训练,2类别图像分割)
2025-07-15
47张创伤性脑损伤(TBI)的3D数据和标签,nii.gz格式,已经标注
2025-07-15
基于transunet和transunet改进【空间注意力模块SA+特征金字塔+损失改进】分割系统:海岸线分割
2025-06-30
基于网页版推理实现的ResUNet和UNet医学图像分割项目:海岸线图像分割
2025-06-30
基于UNet、UNet++、UNet3+实现的航拍下的海路区域分割项目,包含可视化QT推理界面【pytorch实现】
2025-06-30
海岸线区域图像语义分割数据集(约2000张数据和标签,已处理完可以直接训练,2类别图像分割)
2025-06-30
航拍下的海陆区域图像语义分割数据集(约2000张数据和标签,已处理完可以直接训练,2类别图像分割)
2025-06-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人