
改进系列
文章平均质量分 96
主要介绍计算机视觉中,图像分类、图像分割网络的改进实战项目,如resnet、unet改进等等
听风吹等浪起
随缘学习,正常摆烂
个人主页:henry-zhang.blog.csdn.net
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
改进系列(14):基于Swin Transformer的SAM交互式图像分割方法研究:腹部13器官分割
本文提出了一种基于Swin Transformer架构的交互式图像分割方法,通过引入点提示机制实现用户引导的精确分割。该方法采用编码器-解码器结构,在编码阶段利用Swin Transformer的层次化特征提取能力,在解码阶段结合跳跃连接恢复空间细节。实验结果表明,该方法在标准数据集上取得了较高的分割精度,同时支持用户通过点击交互优化分割结果。本文详细介绍了网络架构设计、训练策略以及交互式推理系统的实现。关键词:交互式图像分割;深度学习;点提示;医学图像分析。原创 2025-06-19 16:54:34 · 998 阅读 · 1 评论 -
改进系列(13):基于改进U-ResNet的脊椎医学图像分割系统设计与实现
本文提出一种改进的U-ResNet医学图像分割系统,通过融合残差连接、通道注意力机制和空间金字塔池化模块,显著提升分割精度。系统采用端到端深度学习框架,实现数据预处理、模型训练到可视化分析全流程自动化。实验表明,该方法平均DSC达0.92以上,优于传统分割网络,并提供友好GUI界面支持交互式操作。改进的网络架构包含多级残差块编码器、多尺度瓶颈层和带注意力机制的解码器,配合联合损失函数优化,有效解决医学图像分割中的特征提取不足和小目标分割难题。系统还实现了六种评估指标计算和多种可视化分析功能。原创 2025-06-09 13:42:51 · 792 阅读 · 0 评论 -
改进系列(12):基于SAM交互式点提示的UNet腹部多脏器分割方法研究
本文提出了一种基于点提示机制的交互式UNet网络用于腹部多脏器医学图像分割。该方法在传统UNet基础上扩展输入通道,加入点提示信息,允许用户在推理阶段通过点击前景和背景区域提供交互指导。实验采用394例腹部CT图像训练,98例验证,最终在验证集上达到Dice系数0.9358和IoU 0.8805的优异性能。与全自动方法相比,该交互式分割方案更具灵活性,能有效修正边界模糊区域的分割错误,为临床医学图像分析提供了实用解决方案。原创 2025-05-27 10:02:06 · 752 阅读 · 0 评论 -
改进系列(11):基于TransUNet改进SA和特征金字塔注意力模块:心脏超声分割
TransUNet是一种结合了Transformer和U-Net架构的医学图像分割模型,它通过将Transformer的强大全局建模能力与U-Net的局部特征提取能力相结合,在医学图像分割任务中表现出色。原创 2025-05-14 15:43:37 · 1068 阅读 · 0 评论 -
改进系列(10):基于SwinTransformer+CBAM+多尺度特征融合+FocalLoss改进:自动驾驶地面路况识别
整体特点:技术先进性:结合了Swin Transformer和注意力机制,利用了当前先进的深度学习技术。完整流程:覆盖了从数据准备、模型训练到应用部署的完整流程。模块化设计:各组件职责明确,耦合度低,便于维护和扩展。可视化丰富:提供多种训练过程和数据分布的可视化,便于模型分析和调试。用户友好:通过GUI界面降低了使用门槛,使技术成果更易于实际应用。文档完整:代码结构清晰,注释充分,便于理解和二次开发。原创 2025-04-30 10:34:24 · 1497 阅读 · 0 评论 -
改进系列(9):基于VisionTransformer+InceptionDW+Focal_loss改进实现的遥感地面目标识别
例如,一个3×3标准卷积的计算复杂度是输入通道数×输出通道数×3×3,而深度可分离卷积将其分解为输入通道数×3×3(DWConv)和输入通道数×输出通道数×1×1(PWConv),计算量大幅降低。具体而言,InceptionDW模块通常包含多个分支,例如1×1卷积、3×3深度可分离卷积、5×5深度可分离卷积,以及全局平均池化等操作,这些分支的输出在通道维度拼接后融合,形成丰富的多尺度特征表示。--data--test--- 测试集的图像(如果有的话)--data--val--- 验证集的图像。原创 2025-04-23 08:20:48 · 1016 阅读 · 0 评论 -
改进系列(8):基于UNet+CBAM+联合损失改进的水体分割
目录1. UNet2. CBAM、联合损失2.1 CBAM2.2 联合损失3. UNet+CBAM+联合损失4. 水体分割4.1准备工作4.2 train 训练脚本4.3 训练过程4.4 训练生成的结果---->runs4.5 推理5. 项目下载UNet是一种广泛应用于图像分割任务的卷积神经网络架构,由Olaf Ronneberger等人于2015年提出。其核心设计采用独特的U形对称结构,主要由编码器(下采样)和解码器(上采样)两部分组成。编码器通过连续卷积和池化操作逐步提取高层次特征并缩小空间维度,而解码原创 2025-04-21 13:50:59 · 1371 阅读 · 0 评论 -
改进系列(7):基于unet网络改进SE和inception模块的胸部完整肺分割项目
UNet是一种广泛应用于图像分割任务的卷积神经网络架构,由Olaf Ronneberger等人于2015年提出。其核心设计采用独特的U形对称结构,主要由编码器(下采样)和解码器(上采样)两部分组成。编码器通过连续卷积和池化操作逐步提取高层次特征并缩小空间维度,而解码器则通过转置卷积或插值操作逐步恢复空间细节。两者之间的跳跃连接(skip connections)将浅层定位信息与深层语义特征融合,有效解决了梯度消失问题并提升了小目标分割精度。原创 2025-04-15 10:18:38 · 1347 阅读 · 0 评论 -
改进系列(6):基于DenseNet网络添加TripletAttention注意力层实现的番茄病害图像分类
DenseNet是一种深度学习架构,卷积神经网络(CNN)的一种变体,旨在解决梯度消失的问题并提高网络连接性。在传统的CNN中,信息流是顺序的,每一层只连接到下一层。这可能会导致梯度在网络中传播时减小,从而难以训练深度网络。DenseNet旨在通过引入密集连接来缓解这一问题,密集连接允许从网络中的任何层直接连接到任何其他层。DenseNet由多个密集块组成,每个密集块包含多个层。密集块内的每一层都连接到同一块内的其他每一层。这种密集的连接促进了特征重用和信息流,使梯度更容易在整个网络中传播。原创 2024-12-16 16:48:50 · 1650 阅读 · 0 评论 -
改进系列(5):在ResNet网络添加SelfAttention自注意力层实现的遥感卫星下的土地利用情况图像分类
ResNet(残差网络)是一种深度卷积神经网络模型,由Kaiming He等人于2015年提出。它的提出解决了深度神经网络的梯度消失和梯度爆炸问题,使得深层网络的训练变得更加容易和有效。在深度神经网络中,随着网络层数的增加,梯度在反向传播过程中逐渐变小,导致网络的训练变得困难。这是因为在传统的网络结构中,每个网络层都是通过直接逐层堆叠来进行信息的传递。当网络层数增加时,信息的传递路径变得更长,导致梯度逐渐消失。为了解决这个问题,ResNet提出了“残差学习”的概念。原创 2024-12-15 20:43:14 · 1627 阅读 · 0 评论 -
改进系列(4):在TransUnet的transformer中加入CBAM模块实现的心脏左心房医学场景分割
TransUNet是一种用于医学图像分割的深度学习模型它发表在一篇题为“TransUNet:变压器为医学图像分割提供强大的编码器”的论文中介绍的。该模型将通常用于自然语言处理任务的Transformer架构与广泛用于图像分割的U-Net架构相结合。这种组合使TransUNet能够在医学图像分割任务中实现最先进的性能。Transformer架构使TransUNet能够捕获医学图像中的长程依赖关系,这对于精确分割非常重要。U-Net架构提供跳过连接,有助于保存空间信息并提高分割性能。原创 2024-12-11 10:03:00 · 1789 阅读 · 0 评论 -
改进系列(3):基于ResNet网络与CBAM模块融合实现的生活垃圾分类
ResNet(残差网络)是一种深度卷积神经网络模型,由Kaiming He等人于2015年提出。它的提出解决了深度神经网络的梯度消失和梯度爆炸问题,使得深层网络的训练变得更加容易和有效。在深度神经网络中,随着网络层数的增加,梯度在反向传播过程中逐渐变小,导致网络的训练变得困难。这是因为在传统的网络结构中,每个网络层都是通过直接逐层堆叠来进行信息的传递。当网络层数增加时,信息的传递路径变得更长,导致梯度逐渐消失。为了解决这个问题,ResNet提出了“残差学习”的概念。原创 2024-11-08 13:02:03 · 3688 阅读 · 0 评论 -
改进系列(2):Unet加入attention模块与unet的实验对比(脊柱分割、Synapse多器官分割)
注意力模块 (Attention Module) 是一种在深度学习模型中引入的一种机制,用于提高模型对重要信息的关注度。该模块模拟了人类在处理信息时的注意机制,通过动态地分配注意力来选择模型需要关注的部分。在传统的深度学习模型中,每个输入特征都被平等地对待,没有考虑到不同特征的重要性。而在Attention模块中,模型能够基于任务的需求自动地选择性地关注输入特征的不同部分。这可以使得模型更加集中地处理重要的特征,提高模型的表现力和泛化能力。原创 2024-10-28 15:03:08 · 2352 阅读 · 0 评论 -
改进系列(1):TransUnet结合SAM box改进对MICCAI FLARE腹部13器官图像分割
本章尝试将TransUnet和SAM结合,以期望达到更换的模型TransUnet作为医学图像分割的基准,在许多数据集上均取得了很好的效果,然而最近SAM大模型的兴起,图像分割似乎有了新的方向关于图像分割项目、sam模型复现参考本人其他专栏,这里之作简单介绍TransUnet是一个专门为医学图像分割任务设计的深度学习模型。它是一种卷积神经网络(CNN),采用基于变压器的架构。TransUnet在具有相应分割掩模的大型医学图像数据集上进行训练,以学习如何从输入图像中准确分割器官、病变或其他结构。原创 2024-10-12 16:12:44 · 1616 阅读 · 0 评论