二叉树

数据结构中的树是什么?
」(Tree)是计算机数据存储的一种结构,因为存储类型和现实生活中的树类似所以被称为树。
树的源头被称为「」,树其余分叉点被称为「节点」,而树这种数据结构的起始分叉点被称为「根节点」。树衍生的尽头就是叶,在树这种数据结构中把叶称之为「叶节点」。
树中每一节点的起源点被称为「父节点」,衍生出去的点被称为「子节点」。没有父节点的就是「根节点」,没有子节点的就是「叶节点」,而同一父节点的就是「兄弟节点」。

」的基础概念
高度,是从下往上看,用来表示 从根节点到最顶端叶节点所需要遍历的节点数 (包括叶节点)。
深度与高度相反,是从上往下看,用来表示 从最顶端叶节点到根节点所需要遍历的节点数(包括根节点)。
层数,即 高度 +1

二叉树,是最常用的树形结构,每个结点最多能够有两个子节点。
完全二叉树,所有的叶节点都分布在最高的两层,除最高层其余层的子节点数都达到最大,且所有叶节点都在左边。
满二叉树,除了叶节点,每一个节点都有两个子节点
二叉查找树,所有的左节点值都小于父节点值,所有的右节点值都大于父节点值。

二叉树的实现
二叉树的最终实现有基于数组和基于链表两种形式。

数组存储 数组表示二叉树,通过浪费索引为 0 的地址,使得所有的 左节点 的索引都变成了 2i (i 为节点的高度),所有的 右节点 的索引都变成了 2i +1。

优点 - 可以通过下标随机访问某已知高度的节点。 - 节省了存储指向子节点地址的指针所需要的空间。
缺点
表示非完全二叉树时要浪费一定的空间。
二叉树的扩容操作时间复杂度为 O(n),要对数组的数据进行搬运。
适用场景:数据存储量小,访问量大,插入删除操作少。

链表存储 在链式存储中更直观的反映了左右节点与父节点的关系。
优点 - 扩容方便 - 插入、删除操作的时间复杂度都是 O(logn) (与 二分查找法 一致)
缺点
访问数据的时间复杂度相对数组存储要高,时间复杂度为 O(logn) (与 二分查找法 一致)
适用场景:存储数据量大,插入删除频繁,数据读取操作较少。

前序遍历
对任意二叉树树结构,先打印节点本身,再打印左子节点,最后打印右子结点。即:中、左、右。

public void prePrint(Node root) {
        if (root == null)
            return;
        System.out.println(root.getData());
        prePrint(root.left);
        prePrint(root.right);
       // 输出结果: A B D E C F G
    }

中序遍历
对任意二叉树树结构,先打印左子节点,再打印节点本身,最后打印右子结点。即:左、中、右。

public void inPrint(Node root) {
        if (root == null)
            return;
        inPrint(root.left);
        System.out.println(root.getData());
        inPrint(root.right);
        //输出结果: D B E A F C G
    }

后序遍历
对任意二叉树树结构,先打印左子节点,再打印右子节点,最后打印结点本身。即:左、右、中。

public void nextPrint(Node root)
    {
        if(root == null)
            return ; // 递归终止
        nextPrint(root.left);
        nextPrint(root.right);
        System.out.println(root.getData());
        //输出结果: D E B F G C A
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值