
脑功能
文章平均质量分 71
小杨小杨1
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
使用基于深度学习的 T1 加权 MRI 个性化电场图直接估计 tDCS 数字孪生
经颅直流电刺激(tDCS)是一种非侵入性脑刺激方法,通过低强度直流电施加神经调节效应,在抑郁症、物质使用障碍、焦虑和疼痛等领域展现出潜在的积极影响。然而,混合试验结果阻碍了该领域的发展。电流场近似计算为tDCS研究人员提供了一种评估个体对特定tDCS参数响应的方法。尽管已有基于物理模型的公开刺激器推动了研究进展,但这些方法可能存在误差、对数据质量敏感(如分割错误),且运行时间较长(可达数小时)。实现数字功能孪生(Digital Functional Twin)理念,用于个性化tDCS响应预测。原创 2025-03-06 11:05:17 · 677 阅读 · 0 评论 -
迈向具有域通用可解释性的图神经网络,用于基于 fMRI 的脑部疾病诊断
图神经网络(GNNs)已成为基于功能磁共振成像(fMRI)数据诊断脑部疾病的前沿方法。然而,考虑到功能性脑网络的高复杂性以及不同临床中心fMRI数据的强变异性,GNNs 在可解释性和泛化性方面仍面临挑战。尽管已有许多研究分别探讨了GNNs的可解释性和泛化性,但很少有方法能够同时兼顾这两个方面。统一GNNs的可解释性与泛化性问题,并从可解释性的角度重新审视fMRI数据在脑疾病诊断中的领域泛化(DG)问题。目标是学习领域泛化的解释因子,以增强跨中心的图表示学习,从而提高脑疾病诊断的稳定性与准确性。原创 2025-03-06 10:54:15 · 755 阅读 · 0 评论 -
以结构绕行表征功能连接:解读结构-功能耦合机制的新视角
现代神经影像技术为研究结构连接(SC)和功能连接(FC)提供了可能。然而,由于SC和FC在生物连接机制上的差异,现有的统计关联方法难以有效解析其耦合机制。本研究提出一种基于网络拓扑的新视角,以理解SC与FC的复杂关系,并探索其在认知状态演化中的作用。假设每个FC实例要么由SC的直接连接支持,要么由一组替代性SC路径协同维持,形成拓扑上的“绕行(detour)”概念。原创 2025-03-05 10:34:19 · 923 阅读 · 0 评论 -
用于动态脑网络分析的质量感知模糊最小-最大神经网络
动态功能连接(dFCs)在脑部疾病诊断中得到广泛应用。然而,现有的动态脑网络分析方法忽略了脑网络中的模糊信息,以及由于不同时间窗数据质量不一致所带来的不确定性,导致多时间窗的整合结果可能不够可靠。针对这一问题,提出了一种基于质量感知模糊最小-最大神经网络(QFMMNet)的动态脑网络分析方法,以提升dFCs的可靠性和诊断能力。将dFCs的单个时间窗视为一个视角,并在多视角学习框架下定义三种卷积滤波器,以从脑网络中提取特征,从而获取dFCs的多视角证据。原创 2025-03-05 10:17:00 · 254 阅读 · 0 评论 -
Lifespan Brain MR 图像分割的知识引导式提示学习
在整个生命过程中,对脑部MR图像进行自动且精准的组织与结构分割,对于理解脑发育过程和疾病诊断至关重要。然而,由于早期脑发育的快速变化、衰老及疾病导致的复杂形态变异,以及手动标注数据的有限性,该任务面临诸多挑战。针对这些问题,提出了一种基于知识引导提示学习(KGPL)的两步分割框架,以提升脑部MRI分割的准确性和鲁棒性。该框架首先在大规模但标注质量欠佳的数据集上预训练分割模型,随后将从图像-文本对齐中学习到的知识驱动嵌入引入模型。原创 2025-03-04 11:56:54 · 898 阅读 · 0 评论 -
D-CoRP:功能性脑网络的可微分连接优化
脑网络是理解大脑的重要工具,为科学研究和临床诊断提供了关键见解。然而,现有的脑网络模型通常侧重于脑区本身,或忽略了脑连接的复杂性。此外,由MRI衍生的脑网络数据容易受到连接噪声的影响,这凸显了在脑网络建模中纳入连接信息的必要性。针对这一问题,提出了一种可微分模块用于优化脑连接结构。采用基于信息瓶颈理论的多变量优化方法,以应对脑网络的复杂性,并过滤噪声或冗余连接。此外,该方法可作为灵活的插件,适用于大多数图神经网络(GNN)。原创 2025-03-04 10:18:30 · 411 阅读 · 0 评论 -
用于脑疾病识别的定制关系图神经网络
大脑网络/图的连接结构能够揭示不同脑区之间的分离与整合模式。大量研究表明,特定的脑部疾病与某些脑区内部异常的连接模式相关。因此,已有多种图神经网络(GNN)模型被提出,以自动识别脑图中的异常整合模式。现有基于GNN的模型通常以统计特定指标构建脑网络/图,而这些输入结构无法被训练。这一局限可能导致模型在下游任务中的表现受限,从而影响最终结果。因此,提出了一种定制关系图神经网络(CRGNN),以弥合图结构与下游任务之间的差距,使模型能够根据具体任务动态学习最优的脑网络/图。原创 2025-03-03 18:17:56 · 339 阅读 · 0 评论 -
使用分割约束的超分辨率和表征学习从 2D MRI 中重建皮质表面
皮质表面重建通常依赖高质量的三维脑部MRI来构建大脑皮层结构,在揭示神经发育模式方面发挥着至关重要的作用。然而,在临床实践中,由于高昂的成本和较长的扫描时间,往往只能获得质量较低的二维脑部MRI,从而带来挑战。为优化临床数据在大脑皮层分析中的应用,提出了一种从二维脑部MRI图像重建皮质表面的两阶段方法。第一阶段采用分割约束的MRI超分辨率(SR),将超分辨率模型与皮质带分割模型相结合,以增强从二维输入生成的三维图像中的皮质区域。原创 2025-03-03 17:54:00 · 377 阅读 · 0 评论 -
基于亲和力学习的脑功能表征用于疾病诊断
静息态功能磁共振成像 (rsfMRI) 是量化脑功能连接 (FC) 的有效手段,在诊断疾病方面具有潜力。然而,传统的 FC 措施可能无法概括大脑错综复杂的功能动力学;例如,通过 Pearson 相关计算的 FC 仅捕获来自不同大脑区域的信号之间的线性统计依赖关系。提出了一个用于建模 FC 的亲和力学习框架,利用预训练模型来辨别大脑区域之间的信息功能表示。采用随机采样的补丁并对其进行编码以生成区域嵌入,随后被提议的亲和力学习模块用于通过亲和力编码器和信号重建解码器推断任何一对区域之间的函数表示。原创 2025-02-28 10:06:54 · 444 阅读 · 0 评论