- 博客(36)
- 收藏
- 关注
原创 Real-World Blur Dataset for Learning and Benchmarking Deblurring Algorithms
遵循此类方法,我们在一个额外的对齐步骤中,将图像对齐,使得清晰图像中物体的中心与其在模糊图像中对应物体的中心相匹配。我们的系统设计采用配备全画幅传感器和广角镜头的高端无反相机,基于以下原因:首先,我们希望将传统相机的机内处理反映到我们的数据集中,因为经过相机 ISP 处理的模糊 JPEG 图像比原始图像更常见。然后,我们使用我们的测试集对最先进的去模糊方法进行基准测试,包括传统的基于优化的方法 [46, 33, 18] 和最近的基于深度学习的方法 [31, 49, 48, 21, 22, 42]。
2025-07-21 14:42:39
606
原创 Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 论文阅读
针对一般动态场景的非均匀盲去模糊是一个具有挑战性的计算机视觉问题,因为模糊不仅来源于多个物体运动,还来源于相机抖动和场景深度变化。为了去除这些复杂的运动模糊,传统的基于能量优化的方法依赖于简单的假设,例如模糊核是部分均匀或局部线性的。此外,最近的基于机器学习的方法也依赖于在这些假设下生成的合成模糊数据集。这使得传统的去模糊方法在模糊核难以近似或参数化的情况下(例如物体运动边界)无法有效去除模糊。在这项工作中,我们提出了一种多尺度卷积神经网络,以端到端的方式恢复由各种原因引起的模糊图像。
2025-07-18 20:44:39
769
原创 Blur2Blur: Blur Conversion for Unsupervised Image Deblurring on Unknown Domains 论文阅读
本文提出了一种创新框架,旨在训练专门针对特定相机设备的图像去模糊算法。该算法的工作原理是将难以去模糊的模糊输入图像转换为另一种更容易去模糊的模糊图像。这种从一个模糊状态到另一个模糊状态的转换过程,利用了由目标相机设备捕获的、未配对的清晰和模糊图像数据。学习这种模糊到模糊的转换本质上比直接进行模糊到清晰的转换更简单,因为它主要涉及修改模糊模式,而不是重建精细图像细节这一复杂任务。通过在各种基准测试上的综合实验,证明了所提方法的有效性,其在定量和定性上都显著优于最先进的方法。我们的代码和数据可在 https:/
2025-07-17 16:54:16
840
原创 Towards Low Light Enhancement with RAW Images 论文阅读
在本文中,我们首次进行了基准研究,详细阐述了在低光增强中使用 RAW 图像的优越性,并提出了一种新颖的替代方案,以更灵活和实用的方式利用 RAW 图像。受对典型图像处理流程的全面考虑启发,我们开发了一个新的评估框架——因子化增强模型 (FEM),该框架将 RAW 图像的属性分解为可测量的因子,并提供了一个工具,用于实证探索 RAW 图像的属性如何影响增强性能。实证基准结果表明,数据的线性度 (Linearity) 和元数据中记录的曝光时间 (Exposure Time) 起着最关键的作用
2025-07-16 18:49:03
807
原创 Efficient Frequency Domain-based Transformers for High-Quality Image Deblurring CVPR2023 论文阅读
我们提出了一种有效且高效的方法,探索Transformer在频域的特性以实现高质量图像去模糊。我们的方法受到卷积定理的启发,即两个信号在空间域的相关性或卷积等价于它们在频域中的逐元素乘积。这启发我们开发一种高效的基于频域的自注意力求解器 (FSAS),通过逐元素乘积操作而非空间域中的矩阵乘法来估计缩放点积注意力 (scaled dot-product attention)。此外,我们注意到在Transformer中简单地使用朴素的前馈网络 (FFN) 无法生成良好的去模糊结果。
2025-07-14 13:18:37
651
原创 Learning Semantic-Aware Knowledge Guidance for Low-Light Image Enhancement 论文阅读
低光图像增强(LLIE)研究如何改善照明并生成正常光照的图像。大多数现有方法通过全局和均匀的方式改进低光图像,而没有考虑不同区域的语义信息。如果没有语义先验,网络可能会容易偏离一个区域的原始颜色。为了解决这个问题,我们提出了一种新颖的语义感知知识引导框架(SKF),该框架可以帮助低光增强模型学习封装在语义分割模型中的丰富多样的先验知识。我们专注于从三个方面整合语义知识:一种语义感知嵌入模块,它巧妙地将语义先验集成到特征表示空间中;一种语义引导的颜色直方图损失,它保持各种实例的颜色一致性;
2025-06-24 15:01:48
851
2
原创 Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为 Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex 将低光照图像增强问题表述为 Retinex 分解和条件图像生成。在 Retinex 分解中,我们整合了 Transformer 中注意力的优势,并精心设计了一个 Retinex Transformer 分解网络(TDN)将图像分解为光照图
2025-06-24 14:13:09
837
1
原创 Learning to See in the Dark 论文阅读
在弱光环境下成像具有挑战性,原因在于光子数量少且信噪比(SNR)低。短曝光图像会受到噪声影响,而长曝光则可能引入模糊且通常不切实际。虽然已经提出了各种去噪、去模糊和增强技术,但它们在极端条件(如夜间视频速率成像)下的有效性有限。为了支持基于学习的弱光图像处理流程的开发,我们引入了一个包含原始短曝光弱光图像及相应长曝光参考图像的数据集。
2025-06-24 13:14:37
763
1
原创 Restormer: Efficient Transformer for High-Resolution Image Restoration 论文阅读
由于卷积神经网络(CNN)在从大规模数据中学习可泛化的图像先验方面表现出色,这些模型已被广泛应用于图像恢复及相关任务。最近,另一类神经架构——Transformer,在自然语言处理和高层视觉任务上展现出显著的性能提升。虽然Transformer模型缓解了CNN的缺点(即有限的感受野和对输入内容的不适应性),但其计算复杂度随空间分辨率呈二次方增长,因此难以应用于大多数涉及高分辨率图像的图像恢复任务。本工作中,我们通过在核心构建模块(多头注意力和前馈网络)中引入几个关键设计,提出了一种高效的Transforme
2025-06-23 15:35:42
876
1
原创 SSIM、PSNR、LPIPS、MUSIQ、NRQM、NIQE 六个图像质量评估指标
详细解释了SSIM、PSNR、LPIPS、MUSIQ、NRQM、NIQE这六个指标。
2025-06-06 18:00:50
1089
原创 Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
本文提出了一种名为“冷扩散”的新型生成模型,挑战了传统扩散模型依赖高斯噪声的固有观念。研究发现,扩散模型的生成能力并不局限于噪声的添加与去除,而是可以通过完全确定性的降质操作(如模糊、遮蔽等)实现。通过训练恢复网络来反转这些降质操作,冷扩散模型能够在无需任何随机性的情况下生成高质量图像。这一发现不仅突破了传统扩散模型的理论框架,还为更通用的图像生成模型提供了新的研究方向。相关代码已开源,供进一步探索和应用。
2025-05-13 11:20:45
599
1
原创 扩散模型学习
训练过程其实就是在训练 UNet 网络的参数。无论在前向过程还是反向过程,Unet 的职责都是根据当前的样本和时间 t 预测噪声。前向过程:从 1 到 T 的时间采样一个时间 t,生成一个随机噪声加到图片上,从 UNet 获取预测噪声,计算损失后更新 UNet 梯度。反向过程:先从正态分布随机采样和训练样本一样大小的纯噪声图片,从 T-1 到 0 逐步重复以下步骤:从。代码主要分为以下几块:Unet、GaussianDiffusion、Trainer。论文的源代码采用 UNet 实现对。
2025-04-10 10:45:58
243
原创 Multi-Stage Progressive Image Restoration论文阅读
图像复原任务在恢复图像时需要在空间细节与高层语境化信息之间取得复杂的平衡。本文提出了一种新颖的协同设计方法,能够最优地平衡这些竞争目标。我们的核心方案是一种多阶段架构,通过逐步学习退化输入的复原函数,将整体恢复过程分解为更易管理的步骤。具体而言,我们的模型首先利用编码器-解码器架构提取语境化特征,随后将其与保留局部信息的高分辨率分支相结合。在每个阶段,我们引入了一种基于原位监督注意力机制的逐像素自适应设计,用于重新加权局部特征。这种多阶段架构的关键在于不同阶段之间的信息交换。
2025-03-28 21:42:16
978
1
原创 Ingredient-oriented Multi-Degradation Learning for Image Restoration论文阅读
探索不同图像恢复任务之间的关联性对于揭示退化现象背后的内在机理具有重要意义。近年来,各类"多合一"方法蓬勃发展,能够在单一模型中处理多种图像退化问题。然而,在实际应用中,鲜有研究尝试通过挖掘各类退化现象的根本性成分来建立任务间的关联性,导致当涉及更多任务时,模型的可扩展性较差。本文提出一种新颖的成分导向范式,以替代传统的任务导向范式,从而实现可扩展的学习。具体而言,我们提出的方法名为成分导向退化重构框架(IDR),包含两个核心阶段:任务导向知识收集与成分导向知识整合。
2025-03-28 18:19:17
1301
1
原创 AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion 论文阅读 ECCV
本文提出了一种基于潜在扩散模型(LDM)的全自动一体化图像修复框架,旨在解决多种退化问题(如噪声、模糊、低分辨率、压缩伪影等)的联合修复挑战。现有方法通常针对单一或有限类型的退化进行优化,导致在复杂混合退化场景下表现受限。为此,我们设计了一个统一的生成模型,通过在扩散过程中引入可学习的退化嵌入(degradation embedding)机制,使模型能够自适应地感知并修复不同类型的图像退化。具体而言,我们通过以下创新点实现这一目标:(1) 提出多任务退化编码器,将退化特征与图像内容解耦(分开处理)
2025-03-28 13:27:37
1260
1
原创 Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring论文阅读
非均匀盲去模糊(Non-uniform blind deblurring)是计算机视觉中的一项挑战性问题,因为模糊不仅由多个物体的运动引起,还可能源于相机抖动和场景深度变化。为了消除这些复杂的运动模糊,传统基于能量优化的方法依赖于简单假设(例如模糊核局部均匀或线性)。此外,近期的基于机器学习的方法也依赖于在这些假设下生成的合成模糊数据集。这使得传统去模糊方法难以处理模糊核难以参数化的情况(例如物体运动边界)。本文提出了一种多尺度卷积神经网络(CNN),以端到端方式恢复清晰图像,适用于由多种因素导致的模糊。
2025-03-26 14:35:16
1028
1
原创 EnlightenGAN
我们提出了一种高效的无监督生成对抗网络,称为 EnlightenGAN,它可以在没有低/正常光照图像对的情况下进行训练,但在各种真实世界的测试图像上证明具有很好的泛化能力。然而,配对训练图像的可用性假设在处理更不受控制的场景(如去雾、去雨或低光增强)时带来了更多困难:1) 同时捕捉同一视觉场景的损坏和真实图像(例如,同时拍摄低光和正常光照图像对)非常困难,甚至不切实际;使用深度学习的最先进的图像恢复和增强方法严重依赖于合成或捕获的损坏和干净图像对进行训练,例如超分辨率[6]、去噪[7]和去模糊[8]。
2025-03-03 18:18:25
721
原创 Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement 论文笔记
我们将在以下部分详细说明Zero-DCE中的关键组件,即LE-curve、DCE-Net和无参考损失函数。训练数据集:我们采用了来自SICE数据集Part1中的360个多曝光序列 [4] 来训练所提出的DCE-Net。为了在DCE-Net中实现零参考学习,我们提出了一组可微的无参考损失函数,使我们能够评估增强图像的质量。以下是用于训练我们的DCE-Net的四种类型的损失。我们展示了在没有参考图像的情况下,通过任务特定的无参考损失函数间接评估增强质量,训练深度图像增强模型的潜力。
2025-02-25 17:32:02
479
1
原创 暗光增强——Retinex理论学习
暗光增强学习链接Deep Retinex Decomposition for Low-Light Enhancement
2025-02-13 15:16:26
211
原创 图像增强——灰度变换和直方图均衡化
进行灰度拉伸:斜率大于1;比a小的设置成0,比b大的设置成255。比a小和比b大的都在做灰度压缩。这里直方图第三个是画错了的。纯黑对应0,纯白对应1。来自于刘晓玉老师的课。
2025-02-11 10:43:53
227
原创 《Learning Deep CNN Denoiser Prior for Image Restoration》论文学习
基于模型的优化方法和判别式学习方法一直是解决低级视觉中各种反问题的两种主要策略。基于模型的优化方法:这种方法对于处理不同的逆问题是灵活的,但为了达到良好的性能,通常需要复杂的先验信息,这会耗费大量时间。判别式学习方法:这种方法检测速度快,但其应用范围受限于特定任务。最近的研究表明,通过可变分裂技术,可以将降噪器优先插入作为基于模型的优化方法的一部分,以解决其他反问题(例如,去模糊)。当通过判别式学习获得降噪器时,这种整合带来了显著的优势。然而,与快速鉴别降噪器之前的整合研究仍然缺乏。
2025-01-11 22:28:43
691
原创 《Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising》论文学习
本文研究了前馈去噪的卷积神经网络,与一般的在特定噪声水平下训练特定模型的现有方法不同,本文中的 DnCNN 模型能够处理具有未知噪声水平的高斯去噪(即盲高斯去噪)问题,利用残差学习和批归一化来加快训练过程并提高去噪性能。通过残差学习的策略,DnCNN隐式地去除了隐藏层中潜在的干净图像。作者根据这一特性,还训练单个的DnCNN模型来对几个一般的图像去噪任务进行处理,如高斯去噪单图像超分辨率和JPEG 图像去块,都表现出高效的性能。
2025-01-10 21:57:04
766
原创 数字图像处理(冈萨雷斯第三版)学习笔记 - Chapter 4 图像退化
大小要合适,如果太大在这个图会出现两个峰值,要把他们分离开来;如果太小就会无法估计噪声情况。
2025-01-06 18:56:48
168
原创 《Learning Deep CNN Denoiser Prior for Image Restoration》论文初步学习
基于模型的优化方法和判别式学习方法一直是解决低级视觉中各种反问题的两种主要策略。基于模型的优化方法:这种方法对于处理不同的逆问题是灵活的,但为了达到良好的性能,通常需要复杂的先验信息,这会耗费大量时间。判别式学习方法:这种方法检测速度快,但其应用范围受限于特定任务。最近的研究表明,通过可变分裂技术,可以将降噪器优先插入作为基于模型的优化方法的一部分,以解决其他反问题(例如,去模糊)。当通过判别式学习获得降噪器时,这种整合带来了显著的优势。然而,与快速鉴别降噪器之前的整合研究仍然缺乏。
2025-01-06 15:51:32
362
原创 《ASAM: Boosting Segment Anything Model with Adversarial Tuning》论文阅读
由 Meta AI 开发的 Segment Anything Model(SAM)在图像分割任务中表现杰出。然而,SAM 在某些特定的细分应用中也遇到了限制,这促使研究者寻找一种在不损害其固有泛化能力前提下对其进行性能提升的策略。当提到 Segment Anything Model (SAM) ,尽管 SAM 具备强大的图像分割能力,并且可以在没有特定领域训练的情况下应用于广泛的图像分割任务,但在一些特殊或专业领域的图像分割任务中,它的表现可能不如那些专门为此类任务定制和训练的模型。
2024-12-22 22:37:11
739
1
原创 《Practical Deep Raw Image Denoising on Mobile Devices》论文学习
论文翻译论文详细概述论文简要概述
2024-12-18 16:40:41
421
原创 两种经典的去噪算法NLM和BM3D
是像素的集合,也就是整幅图像。该算法的主要运算量还是在相似块的搜索与匹配上,在与NL-Means同样大小的相似块和搜索区域的情况下,BM3D的算法复杂度是要高于NL-Means的,应该大概在NL-Means的3倍左右。在求欧式距离的时候,不同位置的像素的权重是不一样的,距离块的中心越近,权重越大,距离中心越远,权重越小,权重服从高斯分布。一个有效的去除高斯噪声的方式是图像求平均,对N幅相同的图像求平均的结果将使得高斯噪声的方差降低到原来的N分之一,现在效果比较好的去噪算法都是基于这一思想来进行算法设计。
2024-12-13 20:31:20
1105
原创 UNet、AttentionUNet网络学习
通俗易懂来讲就是:在原网络的基础上,在原特征图和上采样特征图进行拼接前,对下采样特征图和上采样特征图增加了一个Attention Gate网络结构的处理,处理完成之后,再进行拼接操作,其他结构是一样的。此度量范围为0到1,其中0表示无重叠,而1表示预测的和地面真实情况之间的完全重叠。(2)Dice coefficient:是预测值与之间之间的重叠的通用度量标准。(3)Intersection over Union:一个简单的度量标准,计算公式:预测的和真实值之间的重叠区域 / 并集的区域。
2024-12-11 19:30:56
415
原创 数字图像处理【杜克大学】(冈萨雷斯第三版)
杜克大学1-1杜克大学1-2杜克大学3-1杜克大学3-2杜克大学4一、绪论二、数字图像处理基础三、空间域图像增强四、频率域图像增强五、图像恢复六、彩色图像处理九、形态学处理十、图像分割总体有用的笔记
2024-10-21 14:19:23
221
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人