自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1165)
  • 收藏
  • 关注

原创 DeepSeek 入门到精通!(清华大学版)

今天给大家推荐一份清华 DeepSeek 使用手册,真的好好用~~清华大学团队出品的 DeepSeek 学习手册,深入解析国产开源 AI DeepSeek 的强大功能,让你从入门到精通,轻松掌握 AI 高效玩法!真的太强了!完整报告104页,文章长度有限无法完整展示,完整资料已经打包放到了网盘,需要的同学自取我的DeepSeek部署资料已打包好(自取↓)但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!❗️为什么你必须了解大模型?

2025-02-10 16:27:46 3247

原创 保姆级实战教程:安装部署私有化大模型,并投喂数据

想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。潘哥今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。酷~~~首先,我们会用到Ollama,功能是运行大模型。Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。

2025-01-28 07:00:00 6648

原创 国产AI大模型「医疗十大应用场景」案例盘点,推动医疗健康领域智能升级

人工智能技术的浪潮正席卷全球,AI大模型以其卓越的数据处理能力和深度学习能力,正在成为医疗健康领域变革的关键力量。本文将深入探讨AI大模型在医疗十大场景中的创新实践,展示其提升医疗服务效率、赋能临床决策、推动行业智能化转型的广阔前景。基于海量医疗数据,辅助临床诊断决策AI大模型通过分析海量医疗数据,能够辅助医生进行更准确的诊断。例如,百度灵医大模型利用其强大的数据处理能力,通过API或插件嵌入的方式,在200多家医疗机构中展开应用,显著提升了诊断的准确性和效率。

2024-12-27 11:24:15 6532

原创 七款国产AI大模型:Kimi,智谱清言,通义千问,文心一言,豆包,天工AI,讯飞,各自的优缺点是什么?

优点:Kimi这货,免费还能多平台支持,不光能实时联网,处理长文本也不带喘的,简直就是程序员的贴心小棉袄啊。缺点:不过呢,这家伙在特定领域翻译上就有点儿不太行,有时候还会抽风宕机,咱也不知道它为啥这么脆弱。优点:智谱清言是清华系的,不光会码代码,还能画图表,简直就是学霸中的学霸。尤其是它的多模态处理和图片理解能力,真心厉害。缺点:不过,别太指望它啥都懂,遇到特别复杂或者前沿的东西,它有时候也会掉链子。优点:阿里云的招牌产品,超大规模,能聊会说,还能处理多语言,厉害得不得了。

2024-12-12 16:24:48 6459

原创 什么是算法工程师?算法工程师有前景吗?

什么是算法工程师?算法工程师说目前最炙手可热的岗位。虽然算法工程师一直被频频提及,但是许多人对这个岗位的了解还知之甚少。那么算法工程师究竟是做什么的?前景怎么样呢?下面我们来一起解开这个高薪技术岗位的神秘面纱!

2023-10-02 08:15:00 3052

原创 18 种 RAG 技术深度比拼:谁才是检索增强生成领域的最优解?

在当今信息爆炸的时代,如何从海量数据中快速准确地获取所需信息,是人工智能领域的一大挑战。Retrieval-Augmented Generation(RAG,检索增强生成)技术应运而生,它结合了检索和生成的优势,通过从大量文档中检索相关信息,再利用这些信息生成高质量的回答。然而,RAG 的实现方式多种多样,不同的技术路径有着不同的优势和局限。今天,我们就来深入探讨一下这些 RAG 技术,看看谁才是真正的“最佳选手”。

2025-06-28 15:57:41 591

原创 大模型行业应用全景解析:从落地场景到范式革新

当 GPT 系列模型掀起生成式 AI 浪潮,行业落地成为检验技术价值的核心战场。目前大模型行业应用呈现 "云原生企业主导开发,垂直行业场景化落地" 的格局 —— 互联网电商、金融、医疗等行业已基于大语言模型构建客服助手、智能投顾等应用,而制造业、能源等领域则更多通过与华为、腾讯等云厂商合作开发行业大模型。

2025-06-28 15:53:12 765

原创 “单Agent+MCP“与“多Agent“架构对比分析:概念、优劣势与架构选择

在开发AI应用时,笔者经常面临这样一个问题:单个Agent+多个MCP工具已经能够完成大部分功能,我们是否还有必要将MCP工具拆分到不同的Agent去构建多Agent系统?

2025-06-27 14:41:43 719

原创 AI产品经理如何设计企业能落地的AI产品架构图?一图讲透,效率倍增!

今天就讲讲这事:如何用一张图,把技术的“可能性”变成企业的“可操作”?本文将一步步拆解,一套实操方法论,送给每一位正站在AI风口的产品经理。

2025-06-27 14:39:25 522

原创 从新手到大师:提示词工程全面解析,看这一篇就够了!

在使用提示词与大语言模型交互时的一些常见设置,包括温度(Temperature)、Top_p、最大长度(Max Length)、停止序列(Stop Sequences)、频率惩罚(Frequency Penalty)和存在惩罚(Presence Penalty)等参数的作用及调整建议,同时提醒最终结果可能因大语言模型版本而异。

2025-06-26 12:01:11 799

原创 图谱增强检索生成(GraphRAG)实战教程:用 LlamaIndex 构建智能知识图谱

检索增强生成(RAG)技术在处理具体精确问题上表现优秀,但遇到需要主题性、全局理解的问题时却力不从心。为了解决这个难题,GraphRAG(图谱增强检索生成)应运而生,它融合了图谱(Graph)与RAG的优势,既精准又高效地处理大规模文本数据中的复杂查询。

2025-06-26 11:59:41 407

原创 大模型企业级部署框架介绍:在企业场景中应该怎么部署大模型

随着大模型的成本越来越低,以及企业生产中对大模型的定制化需求,越来越多的企业选择在本地部署大模型;这样既满足了数据安全性需求,同样也增加了企业定制化的选择。

2025-06-25 15:01:13 532

原创 怎么通俗易懂地理解AI大模型微调?一篇大白话文章解释模型微调!

微调就是在已经训练好的大模型基础上,用你自己的数据继续训练,让模型更符合你的特定需求。

2025-06-25 14:59:45 263

原创 搞Agent到底有没有“钱”途?一文讲清楚2025年AI Agent行业发展13大趋势

自2023年AutoGPT开启智能体序幕以来,AI Agent作为新一代智能交互范式,展现出前所未有的发展活力。2024年,这一领域的发展更是呈现出爆发式增长态势,从个人助手到企业级解决方案,从通用型Agent到垂直领域专家,AI Agent正在重塑数字世界的运作方式。

2025-06-24 14:18:37 730

原创 RAG VS GraphRAG,到底什么时候用GraphRAG?一文给你搞懂!

最近的研究报告称,在许多实际任务中,GraphRAG的表现往往不如普通的RAG。因此产生一个问题:GraphRAG真的有效吗?在哪些场景下,GraphRAG有收益?为了解决这个问题,提出GraphRAG-Bench,这是一个评测GraphRAG的基准,目的是评估GraphRAG模型在层次知识检索和深度上下文推理方面的性能。文章指出的评测方式及评测结论可以参考。

2025-06-24 14:16:23 846

原创 一文讲清楚现代 AI Agent:六大核心组件的构建与实践指南

AI Agent 系统的发展历程,展现了 AI 领域从简单到复杂、从特定到通用的技术演进过程。早期的 AI Agent 主要是面向特定任务的独立执行单元,而现代 AI Agent 已经发展成为能够感知环境、自主决策并采取行动的复杂智能系统。这种转变不仅体现在功能的丰富性上,更重要的是体现在系统架构的整体性和协同性上。

2025-06-23 15:18:39 1172

原创 大模型面试必看:一文讲清楚AI大模型应用开发工程师/算法工程师岗位面试常见问题及答案

大模型面试必看:一文讲清楚AI大模型应用开发工程师/算法工程师岗位面试常见问题及答案

2025-06-23 15:17:35 1457

原创 大模型学习系列:私有化部署问答助手术语、工具和解决方案

目前的大语言模型,几乎都是以聊天的方式来和用户进行交互的, 这也是为什么OpenAI开发的大模型产品叫ChatGPT,核心就是Chat。而我们基于大语言模型LLM落地应用,核心就是利用大模型的语义理解能力和推理能力,帮我们解决一些难以用“标准流程”去解决的问题,比如理解非结构化数据、分析推理、归纳总结等。

2025-06-21 15:32:48 922

原创 如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路

在当今数字化时代,人工智能(AI)已经成为推动各行各业创新的核心力量。越来越多的传统产品开始向智能化转型,AI技术的应用不仅提升了用户体验,还为企业带来了巨大的商业价值。作为产品经理,如何将传统产品转变为AI产品,并在这个过程中实现个人的职业转型,成为了许多人的关注焦点。

2025-06-21 15:23:30 1025

原创 不要沉迷大模型的技术与理论,学习大模型的方法——从做一个小应用开始

今天就从个人的学习历程出发,来讨论一下关于大模型技术的学习方法。

2025-06-20 15:47:59 338

原创 一文彻底讲透AI大模型应用架构,从底层原理到最佳实践!

在AI技术飞速演进的今天,大模型正逐渐成为各类智能应用的“核心引擎”。要想把大模型的强大能力真正落地,需要一套行之有效的架构,将原始数据、模型能力、业务需求紧密串联。下面,我们将结合一张完整的AI大模型应用架构图,从多源数据接入到最终业务落地,分层剖析它的设计思路与关键模块,让你迅速搭建起自己的智能化系统。

2025-06-20 15:25:43 782

原创 打造DeepSeek最强外挂!一篇文章教会你搭建「个人知识库」(喂饭版)

如果把DeepSeek比作我们的脑子,跟它对话就是考试,那么DeepSeek做出的回答就是基于它学过的知识,也就是用于训练的数据做出回答。而个人知识库的存在,就可以让这场考试变成开卷的形式。

2025-06-19 15:37:38 975

原创 SFT 是什么?大模型SFT(监督微调)该怎么做(经验技巧+分析思路)

SFT(Supervised Fine-Tuning) 是监督微调的缩写,主要用于计算机科学领域,特指在预训练模型(如大语言模型)基础上,通过少量标注数据调整模型参数,使其适应特定任务的技术。

2025-06-19 15:30:16 916

原创 【大模型入门】大模型从入门到精通,非常详细,收藏这一篇就够了!!!

近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。本文将从大模型的原理、训练过程、prompt和相关应用介绍等方面进行分析,帮助读者初步了解大模型。

2025-06-18 15:27:35 939

原创 【大模型面试】LLM RAG面试问题大全!

RAG在通用人工智能、数据科学和人工智能的发展领域中起到了变革性的作用。RAG模型让机器能够基于事实产生更准确、连贯和一致的语言,它改变了人类与技术的互动方式。RAG让能够撰写独特内容、引人入胜的产品描述和新闻文章的机器人概念成为现实。尽管RAG的重要性日益增加,但潜在的数据科学家和AI爱好者仍然需要获取全面的信息。本文通过提供20多个顶级RAG面试问题,填补了这一知识空白。

2025-06-18 15:23:58 1005

原创 手把手实战:如何用DeepSeek进行股票分析?

在企业投融资管理中,传统的研究方式往往依赖人工查询与判断,费时费力且响应慢。随着 AI 技术的发展,越来越多的企业希望借助智能体(Agent)实现对股票信息、财报、产业新闻等多源数据的自动理解、归纳和分析,从而支持更快更准的战略决策。

2025-06-17 15:34:10 734

原创 一文讲清智能体(AI Agent),这是一篇不得不看的干货总结!

智能体(Agent)作为先进的人工智能实体,通过持续感知外部环境、自主决策并执行行动来达成预设目标。其架构具备环境感知、动态决策、行为执行等核心功能模块,并集成记忆存储机制、多层级规划策略及工具调用能力。

2025-06-17 15:25:15 1049

原创 什么是token?一文讲清楚大模型(LLM)的token到底是什么

正像陆奇博士所说的那样,大型语言模型为从文本生成到问题回答的各种任务提供了令人印象深刻的能力,不仅彻底改变了自然语言处理(NLP)领域,而且作为基础模型会改变整个软件生态。这些模型的一个经常被忽视的关键点是“token”的作用,即模型处理的各个信息单元。大型语言模型(LLM)不能真正理解原始文本,相反,文本被转换为称为token的数字表示形式,然后将这些token提供给模型进行处理。

2025-06-16 15:58:39 953

原创 一文讲清楚大模型RAG系统中应用知识图谱,看这一篇就够了!

在基于大模型的RAG应用中,可能会出现不同类型的问题,通过知识图谱的辅助可以在不同阶段增强RAG的效果,并具体说明在每个阶段如何改进答案和查询。知识图谱更类似于结构化数据存储,而不是仅仅是一个用于各种目的的结构化数据的一般存储,可以利用它在 RAG 系统中战略性地注入人类推理。

2025-06-16 15:56:31 1618

原创 报告 | 2025大模型原理、技术与应用:从GPT到DeepSeek(附下载)

大模型技术的发展经历了从基础架构到复杂应用的多个阶段。指令精调(instruction tuning)和人类反馈强化学习(RLHF)等技术的引入,不仅降低了人工标注难度,还使生成结果更加多样。未来,大模型的研究方向将聚焦于模型是否具有创新能力,以及开源模型和蒸馏模型的训练代码和数据是否开源等问题。

2025-06-15 10:00:00 870

原创 一文读懂:MCP Servers架构如何像“操作系统”一样管理你的AI能力?

还记得“能力中台”这个词最火的时候吗?几乎每一家大厂都在讲“构建能力中台,实现业务赋能”。然而几年过去了,真正落地且高效运转的“中台系统”却寥寥无几,许多团队甚至在复盘中发现:传统的“中台”架构设计越用越重、越改越慢,最终成了“能力孤岛”的代名词。

2025-06-15 09:45:00 576

原创 不同AI架构如何选择?单Agent+MCP“与“多Agent“架构对比分析!

最近和几个技术朋友聊天,发现大家在构建AI应用时都遇到了同一个问题:到底该选择单一智能体配合MCP协议,还是直接上多智能体系统?如何选择适合自己项目的智能体架构成了许多开发者和企业面临的难题。单一智能体搭配 MCP(模型上下文协议)和多智能体系统(MAS)是两种备受瞩目的模式。前者像一个“全能专家”,通过统一的接口调用各种工具,简单高效;后者则像一个“专家团队”,分工协作,灵活强大。本文将带你深入对比这两种架构,帮助你在实际场景中找到最优解。

2025-06-13 16:31:08 757

原创 一文读懂 LLM(大语言模型)生态【大模型行业应用入门系列】

众所周知,LLM(大语言模型)正在成为推动下一波技术创新浪潮的颠覆性力量,类似于互联网、智能手机以及云计算所引发的革命。通常来说,LLM(大语言模型)往往具备丰富而强大的功能。它能够生成令人惊叹的新颖文本,进行语言翻译,撰写各种类型的富有创意的内容,并以信息丰富的方式回答问题等。这些功能使得 LLM 以一种前所未有的方式改变了我们与信息、知识以及整个世界互动的方式。

2025-06-13 16:11:37 563

原创 北京大学:AI工具深度测评与选型指南v1.0|附319页PDF文件下载

本文主要介绍了AI工具的深度测评与选型指南,包括AI工具的分类、测评维度和方法、不同场景下的AI工具选型指南等内容。文中详细分析了文本生成与处理类AI工具、图像生成与编辑类AI工具、音频生成与处理类AI工具、代码生成与辅助类AI工具以及大模型管理与应用类AI工具的测评结果,并给出了不同场景下的AI工具推荐。文中还提供了AI工具的深度实测案例,包括DeepSeek、Gemini、通义千问、豆包、Kimi等工具的详细测评,以及Midjourney、即梦AI、可灵AI、GPT-4o、Gemini等图像生成类AI工

2025-06-12 14:56:09 643

原创 【大模型行业应用入门系列】一文读懂 LLM 训练:从预训练到微调

自然语言处理(NLP)是人工智能领域中一项重要的研究方向,涉及机器对人类语言进行理解和生成。然而,语言的复杂性和多样性使得处理自然语言任务成为一项极具挑战性的任务。在这个领域中,LLM Training 扮演着至关重要的角色。LLM Training 可以被看作是一次模型的深度学习之旅,通过高质量的训练,LLM 模型能够准确理解上下文,并生成自然流畅的文本,在各种自然语言处理任务中展现出卓越的性能。随着技术的不断进步和计算资源的提升,LLM Training 正在取得突破性的进展。研究人员致力于改进

2025-06-12 14:50:36 698

原创 报告推荐|2024智算与大模型人才白皮书(附88页PDF文件下载)

近两年,以生成式AI大模型为代表的人工智能技术发展速度令人震惊,其快速应用也嫌弃了人工智能崛起热潮,成为数字化转型背景下又一项颠覆性的技术革新。人工智能的火热为各行业带来了发展机遇的同时,也让整个社会面临着挑战。比如对数据的处理使用、算力和算法等都提出了高要求。

2025-06-11 15:47:43 878

原创 不懂RAG?看这一篇万字长文就够了,中科院出品

传统的语言模型,比如 GPT-3,虽然在生成文本方面表现出色,但它们有一个显著的局限性:它们依赖于预训练的参数,无法动态访问外部知识。这意味着这些模型在处理实时信息、领域特定知识或罕见实体时表现不佳。举个例子,在问答任务中,模型可能会生成不准确或过时的答案,因为它无法访问最新的数据。就像你问一个朋友“今天天气怎么样?”,但他只能告诉你去年的天气情况,显然这样的信息对你来说毫无用处。

2025-06-11 15:43:03 1112

原创 北京大学|第十一弹来了!221页《AI Agent与Agentic AI原理与应用》,最全、最新,堪称无敌!

《DeepSeek内部研讨:AI Agent与Agentic AI原理与应用》是由北京大学DeepSeek团队联合北大青鸟人工智能研究院、计算机学院、教育学院共同撰写,系统剖析AI Agent技术内核与实践路径。这份221页的前沿报告,从底层架构到行业应用,为开发者、工程师及技术决策者提供硬核洞察与落地指南。

2025-06-10 15:13:03 337

原创 RAG系列:万字详述RAG的5步流程和12个优化策略,看这一篇就够了!

ChatGPT、GLM等生成式人工智能在文本生成、文本到图像生成等任务中表现出令人印象深刻的性能。但它们也存在固有局限性,包括产生幻觉、缺乏对生成文本的可解释性、专业领域知识理解差,以及对最新知识的了解有限。为了克服这些限制,提高模型的能力,有两种主要途径:一种是微调(Fine Tune)来更新模型,另一种是让他们能够与外部世界互动,以不同的形式和方式获取知识。

2025-06-10 15:06:40 1145

原创 哈尔滨工业大学:大模型原理、技术与应用——从GPT到DeepSeek(免费下载)

哈工大赛尔实验室发布的《大模型原理、技术与应用》报告,详细阐述了自然语言处理技术从浅层机器学习到大模型的演变历程。报告指出,GPT-3凭借1750亿参数引领行业,但其在常识推理和可解释性上存在明显短板。DeepSeek-R1模型以开源、高性价比的姿态入局,通过强化学习(RL)自主习得推理能力,在AIME2024测试中pass@1分数从39.2%飙升至71.0%,逼近OpenAI-01水平。此外,报告还揭示了大模型在医疗、教育、金融等领域的应用潜力,以及未来向AGI迈进的技术路线图。

2025-06-09 15:53:20 500

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除