一、架构设计对比
1、MCP架构
MCP:模块化的客户端-服务器架构。 MCP 由 Anthropic 提出,其核心是建立一种标准化的 客户端-服务器架构。
典型架构包括三部分:MCP Host(承载 AI 模型的应用,如对话界面)、MCP Client(主机应用中的“连接器”模块)和 MCP Server(外部数据源或工具的提供者)。
MCP 的架构强调松耦合和标准化——每个 Server 专注于提供一种能力(例如数据库查询、文件检索等),Host 应用则通过 Client 动态选择需要哪个能力,从而避免为每个新工具写定制集成。
2、A2A架构
A2A 是 Google 与50多家合作伙伴联合推出的开放协议,旨在让来自不同厂商或框架的 AI 代理(Agent)彼此直接通信、协同完成任务。在架构上,A2A并没有集中式的服务器节点,而是以代理对代理的点对点交互为核心。
典型模式是一个代理扮演“客户端代理”的角色,发起任务请求,另一个代理作为“远程代理”接收任务并尝试执行。每个代理通过发布一份描述自身能力的Agent Card(JSON文档)来注册能力,使其它代理可以发现它能做什么,从而选取合适的合作伙伴。这种架构类似于多智能体系统中的协同网络:没有单一中心,每个Agent既可以是任务发起者也可以是执行者,大家通过约定的协议语言交换信息、分工合作。
A2A 强调的是在不同系统之间构建一个通用协作层,允许多个AI代理形成一个动态、多模态的联盟来解决复杂问题,而不局限于单个模型或单个平台。
二、交互协议对比
1、MCP交互协议
MCP 的通信机制: 在通信层面,MCP 基于 JSON-RPC 2.0 协议制定了一套标准消息格式。这意味着 MCP 通信消息以 JSON 表示,遵循远程过程调用的模式。一次完整的 MCP 交互通常包括:客户端发送请求(例如请求某个资源数据或调用工具函数),服务器处理后返回响应。
MCP 连接是有状态的,允许在一次会话中多轮请求-响应交互,并且在连接建立时支持能力协商——也就是客户端和服务器会相互告知自己支持的功能列表,以确保双方“听得懂”对方的请求。通过这种协议,LLM 可以在对话过程中实时获取所需的外部信息。
2、A2A交互协议
A2A 的通信机制: A2A 同样借鉴了 JSON-RPC 的思想,但运行于 HTTP(S) 通道之上,并辅以 Server-Sent Events (SSE) 实现 流式数据传输。具体来说,当一个客户端代理通过 A2A 请求远程代理执行任务时,会通过HTTP发送 JSON 消息描述任务细节,对方则按协议要求返回执行结果或状态更新。如果任务是长时间运行的,双方可以保持一个 SSE 通道,用于持续发送实时进展、部分结果或通知,实现异步协作。
A2A 定义了更加丰富的交互语义:例如任务管理(Task Management)规定了任务的生命周期状态,支持任务被拆解成子任务、多次状态更新直至完成,最终产出称为“artifact”的成果物;消息协作允许代理间交换中间结果和上下文;用户体验协商使多个代理可以就输出格式达成一致(比如一个代理生成图片,另一个代理确认接收并处理)。
A2A 非常注重安全和鉴权机制: 支持企业级的身份认证方案,与 OpenAPI 等现有标准看齐。这一点与 MCP 类似:MCP 提供了比直接开放模型更安全的外部访问方式,而 A2A 则确保不同代理间的数据交换默认是安全可控的。
总的来说,A2A 的交互协议比 MCP 更复杂一些,它不仅关注请求/响应,还定义了发现、通知、协商等流程,以支撑多智能体的协同工作。
三、实际用途和应用场景
1、MCP应用场景
MCP 的应用场景: MCP 被形象地称为 AI 应用的“万用接口”,旨在 打通大型模型与真实世界数据/工具之间的壁垒。它的直接用途是让 AI 模型在回答用户问题时不再孤立,而是可以实时获取最新的数据、调用专用工具完成任务。
MCP 提升了这类交互的安全性: 相比直接把企业数据上传到模型云端或者让模型拥有系统管理权限,MCP 作为中间层可以细粒度地控制模型可访问的数据范围,并使用本地部署的 Server 来保障敏感数据不外泄。目前,Anthropic 已经在 Claude 2 等产品中支持 MCP,本地的 Claude Desktop 应用也内置了 MCP Client,可以连接各种开源的 MCP Server。
anthropic.com开发社区已经贡献了许多 MCP Server 实现,例如连接 Google Drive、Slack、GitHub、数据库(PostgreSQL) 等常见工具的数据接口。一些早期采用者(如 Block 和 Apollo 公司)已经把 MCP 集成进内部系统,开发工具公司如 Zed、Replit、Codeium、Sourcegraph 等也在合作将 MCP 引入其平台,让 AI 辅助编程能够检索更广泛的上下文信息,MCP 在代码助手、业务数据问答、本地信息查询等场景初显身手,为大型模型提供了丰富的“感知”和“操作”能力。
2、A2A应用场景
A2A 的应用场景: A2A 则把目光投向了复杂任务的自动化和多系统联动。它的理想用例是在一个企业或跨平台环境中,部署多个各司其职的 AI 代理,由 A2A 协议让它们形成一个协同工作团队。
由于 Google 在发布 A2A 时联合了 Salesforce、SAP、ServiceNow、Atlassian、MongoDB 等众多企业服务提供商,未来我们可以期待这些公司的产品内都会出现支持 A2A 的智能代理。需要指出的是,A2A 目前仍处于早期阶段(Google 已开放草案规范和 GitHub 仓库供开发者试用),预计2025年底会有成熟版本推出。
尽管如此,产业界的反响已经很热烈,许多开发者开始尝试编写支持 A2A 的代理或将现有自动化流程适配到 A2A 协议上,期待在未来的 AI 多代理生态中抢占先机。
四、结语
综上所述,Anthropic的 MCP 协议和 Google 的 A2A 协议分别解决了 AI 应用中的外部工具接入和多智能体协作两大痛点。在架构和交互上,它们各有侧重又能互相补充,共同构建出一个更加开放、强大的 AI 应用生态。Google 推出 A2A 标志着行业正朝着标准化协同方向迈进,这不仅影响着大厂之间的竞争格局,也为中小企业、传统行业和独立开发者带来了新的机会和挑战。
### 那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!