大模型企业级部署框架介绍:在企业场景中应该怎么部署大模型

随着大语言模型(LLM)的广泛应用,如何高效部署和推理模型成为开发者关注的核心问题。

随着大模型的成本越来越低,以及企业生产中对大模型的定制化需求,越来越多的企业选择在本地部署大模型;这样既满足了数据安全性需求,同样也增加了企业定制化的选择。

但由于大模型是资源大户,再加上并发性需求,因此选择一个好的高性能的大模型部署框架是很多企业都要面临的主要问题。

所以,今天就来介绍几种部署大模型的方式和框架。

img

1、Transformers(Hugging Face)

官网: https://huggingface.co/docs/transformers

技术架构:基于PyTorch/TensorFlow/JAX,提供统一的模型加载、微调和推理接口,支持动态批处理和量化。

优点:模型生态丰富,灵活性强。

缺点:原生推理效率低,多GPU支持复杂。

适用场景:快速原型验证、小规模推理任务。

2、ModelScope(阿里云)

官网:https://modelscope.cn

技术架构:集成模型开发全生命周期工具链,支持多模态模型。

优点:一站式服务,性能优化。

缺点:生态封闭,灵活性受限。

适用场景:企业级云原生部署、多模态应用。

img

3、vLLM

官网: https://vllm.readthedocs.io

技术架构:PagedAttention和Continuous Batching,显存利用率高,支持高并发请求。

优点:吞吐量极高,兼容性广。

缺点:依赖Linux/CUDA,模型转换成本高。

适用场景:高并发在线服务。

4、LMDeploy(零一万物)

官网: https://github.com/InternLM/lmdeploy

技术架构:Turbomind引擎和W4A16量化,优化短文本多并发。

优点:低延迟,轻量化部署。

缺点:社区生态较小,长上下文支持弱。

适用场景:实时对话系统、边缘计算。

5、Ollama

官网: https://ollama.ai

技术架构:基于llama.cpp的轻量级封装,支持CPU/GPU混合推理。

优点:极简部署,跨平台支持。

缺点:性能有限,功能单一。

适用场景:个人开发者测试、教育场景。

6、SGLang

官网: https://github.com/sgl-project/sglang

技术架构:RadixAttention和结构化输出优化,支持JSON/XML格式生成加速。

优点:企业级性能,多模态支持。

缺点:学习成本高,硬件要求高。

适用场景:企业级高并发服务、需结构化输出的应用。

img

7、DeepSpeed

官网:https://www.deepspeed.ai/inference

技术架构:ZeRO-Inference和Tensor Parallelism,支持超大规模模型推理。

优点:分布式优化,无缝衔接训练。

缺点:配置复杂,延迟较高。

适用场景:大规模分布式推理、与训练流程集成的场景。

8、总结与选型建议

  • 个人开发者:优先使用Ollama(零配置)或Transformers(灵活)。
  • 企业高并发场景:选择vLLM(吞吐量)或SGLang(结构化输出)。
  • 边缘计算/实时交互:LMDeploy的低延迟特性最佳。
  • 分布式需求:DeepSpeed和ModelScope支持多节点扩展。

通过合理选择框架,开发者可最大化发挥大模型的性能潜力。建议结合业务需求参考官方文档调整参数,并监控GPU显存与吞吐量指标。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

在企业场景中应该怎么部署大模型——大模型企业级部署框架介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值