一文讲清StratifiedKFold、GroupKFold、KFold 和 StratifiedGroupKFold的异同

下面是一个演示如何使用 StratifiedKFold、GroupKFold、KFold 和 StratifiedGroupKFold 进行交叉验证分割的示例。我们将使用 sklearn 库中的这些类,并分别展示它们的用法。

示例数据
首先,我们创建一个示例数据集。

python
复制代码
import numpy as np
import pandas as pd

# 创建示例数据集
data = {
    'feature1': np.random.randn(10),
    'feature2': np.random.randn(10),
    'target': np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1]),
    'group': np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5])
}
df = pd.DataFrame(data)
print("DataFrame:")
print(df)
1. KFold
KFold 是最基本的交叉验证方法,不考虑标签或组的分布。

python
复制代码
from sklearn.model_selection import KFold

kf = KFold(n_splits=5)
for train_index, test_index in kf.split(df):
    print("KFold")
    print("Train Index:", train_index, "Test Index:", test_index)
    print(df.iloc[train_index], df.iloc[test_index])
    print("\n")
2. StratifiedKFo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值