下面是一个演示如何使用 StratifiedKFold、GroupKFold、KFold 和 StratifiedGroupKFold 进行交叉验证分割的示例。我们将使用 sklearn 库中的这些类,并分别展示它们的用法。
示例数据
首先,我们创建一个示例数据集。
python
复制代码
import numpy as np
import pandas as pd
# 创建示例数据集
data = {
'feature1': np.random.randn(10),
'feature2': np.random.randn(10),
'target': np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1]),
'group': np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5])
}
df = pd.DataFrame(data)
print("DataFrame:")
print(df)
1. KFold
KFold 是最基本的交叉验证方法,不考虑标签或组的分布。
python
复制代码
from sklearn.model_selection import KFold
kf = KFold(n_splits=5)
for train_index, test_index in kf.split(df):
print("KFold")
print("Train Index:", train_index, "Test Index:", test_index)
print(df.iloc[train_index], df.iloc[test_index])
print("\n")
2. StratifiedKFo