时间序列预测(十四)——计算图追踪

 计算图追踪通常是指在深度学习框架(如PyTorch)中,系统自动追踪张量(Tensor)之间的运算关系,以构建计算图(computation graph)的过程。计算图是一种有向无环图,用于表示深度学习模型中各个变量(张量)之间的依赖关系和运算操作。

具体来说,在计算图追踪的过程中,每当一个可微分张量(通常设置为requires_grad=True)经过一个运算操作时,系统就会记录这个操作及其输入和输出张量,从而在计算图中形成一个节点(代表运算操作)和相应的边(代表张量之间的依赖关系)。这个过程是自动进行的,不需要手动构建计算图,其实按我的理解就是代码之间的计算逻辑关系。

计算图追踪的主要目的是为了支持反向传播算法(Backpropagation),这是深度学习模型训练过程中的关键步骤。在反向传播过程中,系统会根据计算图中记录的运算关系和梯度信息,从输出层开始逐层向输入层传播误差信号,并计算每个参数的梯度。这些梯度随后用于更新模型的参数,以最小化损失函数。

以下是对计算图追踪的详细介绍:

1、计算图的基本概念

  • 计算图:由节点和边组成的图,节点表示操作或变量(如加法、乘法、激活函数等),边表示数据(通常是张量)在这些操作之间流动的关系。
  • 有向图:计算图是有向的,表示数据的流动方向,通常是从输入到输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值