时间序列预测(十六)——Python项目框架总结

目录

一、project——主要的项目代码目录(包含源代码) 

1、__init__.py:

2、data_processing.py:

3、model.py:

4、train.py:

5、evaluate.py:

6、predict.py:

二、 data——数据文件目录

1、raw/:

2、processed/:

3、README.md:

三、 models——存储训练好的模型

1、checkpoints/:

2、best_model.pth:

3、model_config.json:

四、results—— 结果保存目录

1、figures/:

2、logs/:

3、predictions/:

五、 tests—— 单元测试文件目录(不是必需的)

1、__init__.py:

最开始已经提到

2、test_data_processing.py:

3、test_model.py:

4、test_predict.py:

总结

六、 docs文件—— 文档目录

1、model_description.md:

七、其他文件

1、main.py(最主要,用作项目的入口点)

2、requirements.txt: 

3、setup.py: 

4、README.md: 

5、.gitignore:

6、LICENSE: 

八、总结


在此之前已经学习了一个比较完整的 Python 项目,

时间序列预测(十五)——有关Python项目框架的实例分析-CSDN博客

为了对上一个项目所学的知识进行总结,同时,也为了构建一个既完整又高效的 Python 项目框架,对Python 项目框架进行系统总结。以下是一个典型的 Python 项目结构:

project_name/
│
├── project/                   # 主要的项目代码目录(包含源代码)
│   ├── __init__.py            # 表示这是一个包的标识
│   ├── data_processing.py     # 数据处理模块(预处理、特征提取等)
│   ├── model.py               # LSTM模型定义和构建
│   ├── train.py               # 训练脚本
│   ├── evaluate.py            # 模型评估脚本
│   └── predict.py             # 预测脚本
│
├── data/                      # 数据文件目录
│   ├── raw/                   # 原始数据,未处理的时间序列数据
│   ├── processed/             # 预处理后的数据(归一化、清洗等)
│   └── README.md              # 数据说明文档(格式、来源等)
│
├── models/                    # 存储训练好的模型
│   ├── checkpoints/           # 存放训练中生成的模型断点
│   ├── best_model.pth         # 保存最优模型(例如 PyTorch 格式)
│   └── model_config.json      # 模型的超参数或配置文件
│
├── results/                   # 结果保存目录
│   ├── figures/               # 存储生成的图像或可视化图表
│   ├── logs/                  # 训练和验证日志文件
│   └── predictions/           # 保存预测的结果文件
│
├── tests/                     # 单元测试文件目录
│   ├── __init__.py
│   ├── test_data_processing.py # 测试数据处理模块
│   ├── test_model.py          # 测试模型模块
│   └── test_predict.py        # 测试预测功能
│
├── docs/                      # 文档目录
│   └── model_description.md   # 模型结构、参数等说明文档
│
├── main.py                    # 用作项目的入口点
│
├── requirements.txt           # 项目依赖包
│
├── setup.py                   # 项目安装配置文件
│
├── README.md                  # 项目的说明文档
│
├── .gitignore                 # Git忽略文件列表
│
└── LICENSE                    # 开源许可证

下面是详细的介绍:

一、project——主要的项目代码目录(包含源代码) 

这个目录包含项目的核心代码,具体模块的作用如下:

1、__init__.py:

表示该目录是一个Python包,允许其他模块导入该包中的内容。__init__.py 文件可以是空的,特别是在 Python 3.3 及之后的版本中,空文件也能将目录标识为Python包。也可以在 __init__.py 中加入一些内容,以便于包的使用或提供一些公共接口。

以下是一些常见的用法:

(1)空文件: 只需将文件保留为空,主要用来标识目录为Python包,适用于 Python 3.3 及之后的版本。

(2)导入模块: 可以在其中导入包中的模块或类,方便用户直接从包中访问:

from .data_processing import load_data, feature_extraction
from .model import LSTMModel

(3)定义包的元数据: 可以添加版本信息、作者信息等:

__version__ = '1.0.0'
__author__ = 'Your Name'

(4)初始化代码: 如果需要在包导入时执行某些初始化逻辑,可以放在这里。

总结: __init__.py 的具体内容取决于项目需求。如果只是用作包标识,可以保持为空;若希望提供功能或信息,可以添加相应的代码。


2、data_processing.py:

该模块负责数据的预处理和特征提取,具体功能包括:

数据清洗: 处理数据中的噪声和异常值,确保数据质量。

归一化: 将数据转换为标准范围,便于后续分析和建模。

缺失值处理: 识别并处理缺失值,通过插值、填充等方法补全数据。

特征提取: 从原始数据中提取有用的特征,以提高模型的预测能力。

import pandas as pd
from sklearn.preprocessing import MinMaxScaler

class DataProcessor:  #封装了数据处理的主要功能,包括清洗、归一化、缺失值处理和特征提取。
    def __init__(self, data):
        self.data = data
        self.scaler = MinMaxScaler()

    def clean_data(self):
        # 删除缺失值
        self.data.dropna(inplace=True)
        # 处理异常值(简单示例:去掉大于3个标准差的值)
        self.data = self.data[(self.data - self.data.mean()).abs() <= 3 * self.data.std()]

    def normalize_data(self):
        # 归一化数据
        self.data[self.data.columns] = self.scaler.fit_transform(self.data)

    def handle_missing_values(self):
        # 使用前向填充方法处理缺失值
        self.data.fillna(method='ffill', inplace=True)

    def extract_features(self):
        # 示例:从时间序列数据中提取特征,如滑动平均
        self.data['moving_average'] = self.data['value'].rolling(window=3).mean()

    def process_data(self):#调用所有处理步骤并返回处理后的数据
        self.clean_data()
        self.handle_missing_values()
        self.normalize_data()
        self.extract_features()
        return self.data

在main.py中使用时,

# 使用示例,只使用其中一种方法normalize_data
if __name__ == "__main__":
    # 示例数据加载
    data = pd.read_csv('path_to_your_data.csv')
    
    processor = DataProcessor(data)
    processor.normalize_data()  # 仅调用归一化方法(这里没有返回值,只能这样写)
    
    print(processor.data.head())  # 输出处理后的数据



# 使用示例,调用所有处理步骤
if __name__ == "__main__":
    # 示例数据加载
    data = pd.read_csv('path_to_your_data.csv')
    
    processor = DataProcessor(data)  #也可以这样processor.process_data() ,不将结果保存到变量中
    processed_data = processor.process_data()
    
    print(processed_data.head())

总结: data_processing.py 是项目中不可或缺的一部分,确保输入数据的质量和适用性,为模型训练奠定基础。


3、model.py:

定义模型的结构和构建。如LSTM

import torch
import torch.nn as nn

class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, 1)  # 假设输出为一个连续值

    def forward(self, x):
        out, _ = self.lstm(x)
        out = self.fc(out[:, -1, :])  # 取最后时间步的输出
        return out

LSTM层: 接收输入特征并提取时序特征。

全连接层: 将LSTM的输出转换为目标值。


4、train.py:

包含训练模型的逻辑,包括加载数据、训练循环、损失计算和早停机制(训练完之后要先进行评估,之后再进行早停机制)的实现。

import torch
import torch.optim as optim
from torch.utils.data import DataLoader

def train_model(model, train_loader, valid_loader, criterion, optimizer, num_epochs, patience=5):
    model.train()  # 设置模型为训练模式
    best_loss = float('inf')  # 初始化最佳损失
    epochs_without_improvement = 0  # 记录没有改善的轮次

    for epoch in range(num_epochs):
        total_loss = 0
        for inputs, labels in train_loader:
            optimizer.zero_grad()  # 清空梯度
            outputs = model(inputs)  # 前向传播
            loss = criterion(outputs, labels)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            total_loss +
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值