【YOLO 系列】基于YOLO V8的野生动物检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】

前言

在自然环境和野生动物栖息地附近,人类活动日益频繁,这不仅对生态环境产生影响,也增加了与危险动物相遇的风险。为了提高人们对潜在危险的意识并采取预防措施,我们启动了基于YOLOV8的动物检测项目。该项目旨在通过先进的目标检测技术,实时识别和区分危险与非危险动物,从而提醒人们及时规避潜在威胁。

通过对动物数据集的深入分析和精确标注,我们训练了YOLOV8模型,使其能够高效地从图像中识别出危险动物。这一系统的设计考虑了野外环境的复杂性,确保即使在动物行为多变和环境条件不同时,也能提供准确的检测结果。

基于此项目,设计了一个使用Pyqt5库来搭建页面展示系统。本系统支持的功能包括训练模型的导入、初始化;置信度与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标信息列表、位置信息;以及推理用时。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接

优势

  1. 高准确性:YOLOV8模型经过专门针对动物特征的训练,提高了对危险动物的识别准确度。

  2. 实时性:系统能够快速处理图像数据,及时发出危险动物接近的警告,为避险争取宝贵时间。

  3. 鲁棒性:即使在动物行为快速变化或环境条件不理想的情况下,系统也能保持高识别率。

  4. 用户友好:系统操作简单,易于集成到现有的监控或警报系统中,为使用者提供直观的反馈。

  5. 多环境适用:系统适用于多种自然环境,包括森林、草原、湿地等,以及野生动物园等人工环境。

应用前景

  1. 自然保护区监控:系统可以帮助保护区管理人员监控危险动物的活动范围,保护游客和工作人员的安全。

  2. 野生动物园管理:在野生动物园中,系统可以辅助监控动物行为,确保游客在安全距离内观赏。

  3. 农业和畜牧业保护:系统可以用于识别可能对农作物或家畜构成威胁的野生动物,帮助农民采取预防措施。

  4. 户外探险辅助:对于徒步旅行者和探险者,系统可以作为辅助工具,提醒他们避开潜在的危险动物。

  5. 科学研究:系统可以为动物学家提供实时的动物分布和行为数据,促进生态和行为学研究。

  6. 环境教育:系统可以集成到环境教育项目中,提高公众对野生动物保护和安全意识的认识。

通过本项目,我们期望能够为人类与野生动物的和谐共处提供技术支持,同时减少因意外遭遇危险动物而引发的事故,促进生态保护和人类活动的可持续发展。


一、软件核心功能介绍及效果演示

软件主要功能

  1. 支持图片、图片批量、视频及摄像头进行检测,同时摄像头可支持内置摄像头和外设摄像头

  2. 可对检测结果进行单独分析,并且显示单个检测物体的坐标、置信度等;

  3. 界面可实时显示目标位置检测结果检测时间置信度检测结果回滚等信息;

  4. 支持图片视频摄像头的结果保存,将检测结果保持为excel文件;

界面参数设置说明

  1. 标签4 摄像头源/相机/网络源

  2. 标签5 交并比阈值:目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

  3. 标签6 置信度阈值:目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;

  4. 标签7 显卡选择:在进行推理时是否使用显卡,默认勾选(使用显卡);

  5. 标签8 半精度选择:启用半精度(FP16)推理,可加快支持的 GPU 上的模型推理速度,同时将对精度的影响降至最低,默认不勾选(不使用半精度);

  6. 标签9 图片推理尺寸: 在推理时将推理图片固定的尺寸;

  7. 标签10 数据集的配置文件:数据集在训练时的配置文件(.yaml);

  8. 标签11 训练好的模型:最终要进行推理的模型,一般选择最优的一个模型;

  9. 标签12 类别名:该项目的所有类别,可以方便在后续查看某一个类别。

视频演示

野生动物检测与报警系统

图片检测演示

  1. 点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:

  2. 点击表格中的指定行,界面会显示该行表格所写的信息内容。

视频检测演示

  1. 点击视频按钮图标,打开选择需要检测的视频,在点击开始运行会自动显示检测结果。再次点击停止按钮,会停止检测视频。

  2. 点击表格中的指定行,界面会显示该行表格所写的信息内容。

摄像头检测演示

  1. 选择相机源中输入需要检测的摄像头(可以是电脑自带摄像头,也可以是外接摄像头,视频流等方式),然后点击摄像头图标来固定选择的推理流方式,最后在点击开始运行即可开始检测,当点击停止运行时则关闭摄像头检测。

  2. 点击表格中的指定行,界面会显示该行表格所写的信息内容。

检测结果保存

点击导出数据按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的检测结果进行保存为excel文档,结果会存储在output目录下。

环境搭建

创建专属环境

conda create -n yolo python==3.8

 激活专属环境

conda activate yolo

安装torch-GPU库

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "torch-2.0.1+cu118-cp38-cp38-win_amd64.whl"

安装torchvision-GPU库

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "torchvision-0.15.2+cu118-cp38-cp38-win_amd64.whl"

安装ultralytics库

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

测试环境

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

 此时就表明环境安装成功!!!

安装图形化界面库 pyqt5

pip install pyqt5 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pyqt5-tools -i https://pypi.tuna.tsinghua.edu.cn/simple

算法原理

YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

YOLOv8目标检测算法具有如下的几点优势:

(1)更友好的安装/运行方式;

(2)速度更快、准确率更高;

(3)新的backbone,将YOLOv5中的C3更换为C2F;

(4)YOLO系列第一次使用anchor-free;

(5)新的损失函数。

YOLO各版本性能对比

网络结构

YOLOv8模型的整体结构如下图所示:

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块;另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free

YOLOv8的网络架构包含了多个关键组件,这些组件共同工作以实现快速而准确的目标检测。首先是其创新的特征提取网络(Backbone),YOLOv8的Backbone采用了最新的网络设计理念,通过深层次的特征融合和精细的特征提取策略来增强对目标的识别能力。这一策略的成功关键在于其特征提取器能够充分捕获目标的细微特征,同时保持计算效率。

YOLOv8在训练策略上也进行了优化。与YOLOv7相比,YOLOv8采用了SPFF(Spatial Pyramid Fusion Fast)策略,该策略通过高效的多尺度特征融合提高了模型对不同大小目标的检测能力。此外,YOLOv8在训练过程中引入了一种名为Task Aligned Assigner的新技术,这种技术能够更精准地将预测框与真实目标对齐,从而提高检测的准确率。

在损失函数的设计上,YOLOv8进行了创新,采用了JFL(Joint Family Losses),这是一种集成了多个损失函数的复合损失函数,能够同时优化目标检测的多个方面。这些损失函数包括用于提升模型对目标位置和大小预测准确性的CIOU Loss,以及优化分类准确性的分类损失函数。JFL的设计允许YOLOv8更全面地考虑检测任务中的不同需求,通过协调各种损失来提升总体的性能。

YOLOv8的原理不仅在于其创新的技术点,更在于这些技术如何被综合应用于解决实际的目标检测问题。通过其精心设计的网络架构、高效的训练策略以及综合的损失函数设计,YOLOv8实现了在保持实时性的同时,提高了在复杂场景下的检测准确率。这些改进使得YOLOv8成为了一个强大的工具,适用于从自动驾驶到智能视频监控等多种应用场景。

四、模型的训练、评估与推理

数据集准备

本项目使用的数据集是一个野生动物的数据集,一共有12个类别,有56272张图片。类别为:'bear', 'dog', 'bird', 'zebra', 'giraffe', 'elephant', 'cow', 'cat', 'sheep', 'horse', 'buffalo', 'rhino'。各类标签的数量分别为:bear: 1420、dog: 6495、bird: 13480、zebra: 7440、giraffe: 6197、elephant: 6893、cow: 10359、cat: 5365、sheep: 12200、horse: 7638、buffalo: 488、rhino: 488。

图片数据集的存放格式如下:

  1. 运行splitDataset.py,用于划分数据集;

  2. 运行xml2txt.py,用于得到训练标注文件;

  3. 运行ViewCategory.py,用于查看一共有那些类别;

  4. mydata.yaml,用于填写模型训练的数据配置文件。

注意:在xml2txt.py和mydata.yaml中的类别名称的顺序要一致。

模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,代码如下:

from ultralytics import YOLO

# build from YAML and transfer weights
model = YOLO('yolov8n.yaml').load('./weights/yolov8n.pt')

# Train the model
model.train(data='./VOCData/mydata.yaml', epochs=100, imgsz=640)

训练结果分析

YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

P_curve.png

confusion_matrix_normalized.png

训练 batch

验证 batch

模型推理

模型训练完成后,可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们通过使用该文件进行后续的推理检测。

图片检测代码如下:

from ultralytics import YOLO

# Load a model
model = YOLO('./runs/detect/train/weights/best.pt')

# Run batched inference on a list of images
model.predict("./img", imgsz=640, save=True, device=0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。

五、获取方式

本文涉及到的完整全部程序文件:包括 python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:

注意:该代码基于Python3.8开发,运行界面的主程序为GUI.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照requirements.txt配置软件运行所需环境。

硬性的标准其实限制不了无限可能的我们,所以啊!少年们加油吧!

<think>嗯,用户想找一个基于YOLOv8的生活垃圾分类目标检测系统的完整实现,包括Python源码PyQt5界面数据集训练代码。首先,我需要回忆一下YOLOv8的相关知识,以及它在目标检测中的应用。YOLOv8是Ultralytics发布的,应该是YOLO系列的最新版本,性能不错,适合实时检测任务。 用户提到的几个引用都是关于不同应用的YOLOv8系统,比如安全帽检测、PCB板缺陷检测,这些项目都有源码界面数据集训练代码。这说明用户可能希望有一个类似的结构,但针对垃圾分类。所以,我需要从系统结构、数据集准备、模型训练界面开发这几个方面来组织回答。 首先,系统结构方面,通常分为数据准备、模型训练界面开发、系统集成。需要确保每个部分都有对应的资源。比如数据集的来源,可能用户需要公开的垃圾分类数据集,或者自己标注。可能需要推荐一些现有的数据集,比如Hugging Face上的TrashBox或者TACO,或者建议用户自己收集标注。 然后是模型训练部分,YOLOv8代码通常基于Ultralytics的库,所以需要安装相应的依赖,比如torch、ultralytics、opencv等。训练代码的示例可能需要给出,比如如何加载数据集,设置参数,进行训练。这部分可以引用之前类似项目的结构,比如引用中的安全帽检测系统,准确率0.95,说明训练方法是可行的。 接下来是PyQt5界面开发,这部分需要设计界面元素,比如图片/视频上传按钮,检测结果显示区域,结果统计等。需要调用训练好的模型进行推理,并将结果可视化。可能需要用到OpenCV处理图像,PyQt5的组件布局,比如QMainWindow、QLabel、QPushButton等。还要处理视频和摄像头的实时检测,可能需要多线程来处理,避免界面卡顿。 数据集方面,用户可能需要具体的下载链接或者处理方法,比如数据增强、标注格式(YOLO格式的txt文件)。数据预处理步骤,比如划分训练集、验证集、测试集,可能需要给出代码示例,如使用splitfolders库。 训练代码部分,需要详细说明如何配置YOLOv8模型,设置epochs、batch size等参数,以及如何保存最佳模型。可能需要提到早停法、学习率调整等优化策略,以提高模型准确率。这部分可以参考引用中的安全帽检测项目,准确率高达0.95,说明类似的训练方法有效。 系统集成部分,需要将训练好的模型嵌入到PyQt5界面中,处理用户输入(图片、视频、摄像头),运行推理,并展示结果。同时,结果保存功能也很重要,比如保存检测后的图片或视频,可能需要使用OpenCV的VideoWriter。 在相关问题部分,需要生成用户可能进一步提出的问题,比如如何优化模型、部署到移动端、处理实时视频中的性能问题,或者数据增强的方法。这些问题应该项目实际开发中可能遇到的挑战相关。 最后,要确保回答符合用户的要求,结构清晰,分步骤说明,并且引用相关的参考资料,比如提到的三个引用中的内容,尤其是引用1中的垃圾分类检测系统,可能直接相关,需要突出这一点。同时,注意使用正确的LaTeX格式,但用户的问题中没有数学公式,可能不需要太多数学内容,但需遵循系统指令中的格式要求。 需要检查是否有遗漏的部分,比如数据集的标注工具推荐(如LabelImg),或者模型评估指标(如mAP),或者环境配置的注意事项(如CUDA版本)。另外,可能需要提醒用户注意数据集的平衡性,不同类别的样本数量是否均衡,以避免模型偏向某些类别。 总结来说,回答需要涵盖系统结构、数据集准备、模型训练界面开发、系统集成,并提供相关代码示例和资源链接,同时引用已有的类似项目作为参考,确保用户能够按照步骤实现整个系统。</think>基于YOLOv8的生活垃圾分类目标检测系统开发可分为以下核心步骤,结合现有项目结构和深度学习技术实现: ### 一、系统架构设计 系统包含四大模块: 1. **数据集模块**:包含标注好的垃圾分类图像及YOLO格式标签 2. **模型训练模块**:基于YOLOv8构建目标检测网络 3. **PyQt5界面模块**:实现可视化交互界面 4. **检测推理模块**:集成训练模型实现实时检测[^1] ### 二、数据集准备 推荐使用公开垃圾分类数据集: - **TrashBox数据集**(Hugging Face平台) - **TACO数据集**(包含60类垃圾) - 自建数据集需满足: ```python # 数据集目录结构 dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 标注工具推荐使用LabelImg,生成YOLO格式的txt标注文件 ### 三、模型训练实现 ```python from ultralytics import YOLO # 加载预训练模型 model = YOLO('yolov8n.pt') # 训练配置 results = model.train( data='trash.yaml', epochs=100, batch=16, imgsz=640, device='0', name='yolov8_trash_det' ) ``` 需创建`trash.yaml`定义数据集路径和类别信息: ```yaml path: ./dataset train: images/train val: images/val names: 0: plastic 1: paper 2: metal 3: glass ``` ### 四、PyQt5界面开发 核心界面组件: ```python class MainWindow(QMainWindow): def __init__(self): super().__init__() # 界面布局 self.image_label = QLabel(self) self.result_table = QTableWidget() self.cam_btn = QPushButton("开启摄像头") # 模型加载 self.model = YOLO('best.pt') def detect_image(self, img_path): results = self.model(img_path) self.show_results(results[0]) ``` ### 五、系统集成关键代码 ```python def video_detection(self): cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() results = self.model.track(frame, persist=True) annotated_frame = results[0].plot() cv2.imshow('Detection', annotated_frame) ``` ### 六、项目资源获取 完整代码包应包含: - 训练好的权重文件(`best.pt`) - PyQt5界面源码(`main_window.py`) - 示例数据集(建议2000+图像) - 环境依赖文件(`requirements.txt`)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牧锦程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值