实时数仓简介

随着实时场景需求增加,实时处理框架发展,Flink成热门。该项目以尚硅谷大数据实时数仓项目为基础,结合电商场景作扩展,介绍实时数仓理论。还分享了开发语言、数据库、数据采集等技术栈,将深入学习各技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

随着数据科学的进步以及处理技术的成熟,业务/开发人员早已不在满足于传统的离线数仓报表或者提前设置好维度与指标的OLAP查询。近些年来,实时场景需求的不断增加,比如实时报表、实时指标、实时OLAP、实时监控等,一方面对实时数据提出了更多的要求,另一方面也促进了实时处理框架的发展,从storm、spark streaming、flink,flink作为目前最热门的实时处理框架,我们将从它开始慢慢揭露实时数仓的秘密。

该项目以尚硅谷大数据实时数仓项目为基础,结合电商互联网公司实时数据场景,对项目作了一定的扩展,从实时数仓理论基础开始,试着让读者理解实时数仓,并熟悉互联网领域常见的数据需求,学到有用的技术。时间回到2018年,作为转行入门大数据,当时的学习资源还没这么丰富,最开始在网上找视频看(在这里再次鸣谢尚硅谷),然后和大部分群友一样,来到一线城市,海投简历...我也将把自己的经历分享给大家

项目技术栈

  • 开发语言:Java、Scala、Sql
  • 数据库:Mysql
  • 数据采集:Canal
  • 消息队列:Kafka
  • 实时计算:Flink
  • 实时OLAP:ClickHouse
  • 数据存储:Phoenix、HBase、Redis
  • 监控:Prometheus、Grafana
  • 实时计算平台:基于Flink Sql、SpringBoot
  • 实时数据服务:Spring、SpringBoot

如果你对以上某些技术栈并不熟悉,没有关系,我们将会一个一个深入学习。

 

### ClickHouse 数据仓库使用指南 #### 1. ClickHouse简介 ClickHouse 是一款开源的列式存储数据库管理系统 (DBMS),专为实时数据分析而设计。其架构优化使得查询速度极快,能够处理大规模的数据集并提供亚秒级响应时间。 #### 2. 主要特性 - **高性能读取**:通过压缩算法和向量化执行引擎实现高效的查询性能[^3]。 - **分布式支持**:内置对分布式环境的支持,允许水平扩展以应对更大规模的工作负载。 - **SQL兼容性**:尽管进行了许多针对OLAP场景下的改进,但仍保持良好的标准SQL语法兼容性。 - **易部署维护**:安装配置简单快捷;官方提供了详尽文档指导用户完成从零到一的过程[^4]。 #### 3. 架构设计原则 为了构建高效稳定的ClickHouse数仓系统,在实际项目实施过程中应遵循如下几个方面: ##### a. 表结构规划 合理定义表模式对于后续操作至关重要。考虑到业务需求和技术特点,建议采用适合于特定应用场景的方式创建表格,比如MergeTree族中的ReplicatedReplacingMergeTree可以有效解决数据冗余问题的同时保障高可用性[^5]。 ##### b. 分区策略设定 分区有助于加速某些类型的查询,并减少磁盘I/O消耗。可以根据日期字段或其他具有明显范围特性的属性来进行划分,从而提高整体效率。 ##### c. 索引机制应用 虽然ClickHouse本身并不依赖传统意义上的索引来提升检索能力,但是仍然可以通过设置Primary Key来间接达到类似效果——即利用排序键加快过滤条件匹配的速度。 ```sql CREATE TABLE example_table ( id UInt64, timestamp DateTime, value Float64 ) ENGINE = ReplicatedReplacingMergeTree('/clickhouse/tables/{shard}/example', '{replica}') PARTITION BY toYYYYMM(timestamp) ORDER BY (id, timestamp); ``` #### 4. 实践案例分享 某大型互联网公司将其广告投放平台的日志记录迁移到基于ClickHouse搭建的数据湖解决方案上。由于该行业存在海量日志产生的特征,原有方案难以满足日益增长的需求。迁移后不仅显著降低了存储成本,而且大幅提升了报表生成时效性和精准度,进而促进了决策制定过程更加科学化、智能化的发展趋势[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值