迁移学习实例

本文深入探讨了迁移学习的概念,通过Python实现了一个具体的机器学习案例,展示了如何利用预训练模型提升新任务的性能,同时讨论了迁移学习在数据有限情况下的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import numpy as np
from numpy import *
import tensorflow as tf
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, LSTM
from keras.optimizers import Adam

#将数据读取和预处理的部分封装成一个函数,模型定义、编译和训练的部分封装成另一个函数,然后在主程序中调用这些函数即可。
#如果需要在不同的程序中使用这些函数,可以将它们保存为独立的文件或模块并在需要时导入相应的模块即可。
#读取数据
def preprocess_data(data_path,col_name):
    # 读取数据
    data = pd.read_excel(data_path, index_col=0)
    arrs = np.array(data.iloc[:,:])
    xs = arrs[:,0:12].astype('float32')
    ys0 = (np.array(data[col_name],dtype='float32')).reshape(-1,1)
    
    # 处理数据,将数据进行归一化,即把数据映射到较小范围
    for dim in range(xs.shape[1]):
        xs[:,dim] = (xs[:,dim] - xs[:,dim].min())/(xs[:,dim].max() - xs[:,dim].min())
    ys = (ys0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值