图像生成模型的不可检测水印——Undetectable Watermark for Generative Image Models

一篇将加密与水印结合的论文,作者来自安全大牛宋晓东团队,核心思想是将潜变量的符号位用加密后的符号位替换。

原本的潜变量服从标准正态分布,其符号位是对称的,作者设计的加密方法能够将水印同样加密成对称分布的-1与+1,正好替换原来的符号位后仍能保持潜变量分布,还是很巧妙的。

作者的Introduction写的也很好,好的论文其Introduction不仅是话题引入,更是为文章核心服务铺垫。其实读了这篇论文会发现这个水印方法其鲁棒性与Treering、高斯shading相比并不高,但是其优点就是生成质量高,能不掉FID,所以作者就在Introduction部分为核心观点做铺垫——生成式水印中要先关注生成质量,然后再讨论鲁棒性。

下面就是文章的核心算法,比较复杂,加密算法也是作者以前的论文。

之后是实验结果,作者的攻击实验做得比较全面,但是对于几何攻击一个没做,也确实不能抵抗

如对这篇文章的细节或复现也感兴趣,欢迎与我讨论~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有趣di

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值