- 博客(95)
- 收藏
- 关注
原创 slot attention 网络搭建的代码讲解
本文讲解 sot attention 的网络搭建过程,其中包括初始化函数,网络前向传播函数。文章对里面的参数作用和使用进行了详细讲解。
2025-06-24 19:22:53
861
原创 Pytorch实战四 基于 VGG net 搭建一个串联的神经网络结构
Pytorch 实战四 VGG 类似网络的建立,这里建立一个类,核心是初始化操作和前向传播。代码部分的细节在卷积过程中的图片张量变化,函数调用时参数要满足的要求。
2025-06-19 02:13:10
853
原创 Pytorch 实战三 Cifar 10 数据加载
本文主要讲解了数据加载,读取原始数据,把数组转化成图片。然后加载数据,把图片加上标签,根据地址自动加载数据。详细讲解了代码和运行过程。
2025-06-18 15:17:23
987
原创 Pytorch 卷积神经网络参数说明一
本文基于前面两个实战,主要讲解了神经网络中的细节层,包括卷积层、池化层、全连接层、损失层等等。给出了其作用和关键代码函数接口。
2025-06-14 23:23:07
1342
2
原创 pytorch 实战二 CNN手写数字识别
本文介绍了使用PyTorch实现手写数字识别任务的全过程。主要内容包括:使用torchvision.datasets加载MNIST数据集,并利用DataLoader进行分批处理;构建基于Sequential的CNN网络结构,包含卷积层、BatchNorm和全连接层;采用交叉熵损失和Adam优化器进行训练,详细说明了训练流程和测试方法;最终模型在测试集上达到98%的准确率,loss降至0.06左右。文章提供了完整代码和数据集下载链接,适合作为深度学习入门实践项目。
2025-06-14 15:13:24
1097
原创 pytorch实战波斯顿房价回归模型
这是pytorch 基础过后的第一个完整项目,不懂的欢迎评论。内容包括:数据预处理,数据集分割,网络定义,训练和测试。其中还有一些小细节,损失函数选择和优化器选择,欢迎大家阅读。
2025-06-13 18:48:50
1006
原创 pytorch 之 nn 库与调试
本文讲解了pytorch 中的nn库的几个常用的类和函数,以及数据可视化的库,具体的实例我们在实战中给出,敬请关注后续,会更加精彩
2025-06-12 19:54:32
912
原创 pytorch 中前向传播和后向传播的自定义函数
在开始正文之前,请各位姥爷动动手指,给小店增加一点访问量吧,,同时希望我的文章对你的学习有所帮助。本文也很简单,主要讲解pytorch的前向传播张量计算,和后向传播获取梯度计算。
2025-06-11 20:11:29
494
2
原创 Pytorch 的编程技巧
这篇文章讲述了一些pytorch 的一些基本操作,和numpy之间的转化,读入一张图片,然后进行数据处理,可视化。后面我们还会继续深入介绍未使用的函数接口。
2025-06-11 16:11:30
837
原创 pytorch 与 张量的处理
核心思想是把一个张量看成一个数组(也是存储的底层逻辑),然后按照给定的规模进行重构,顺序选择元素,填入新的张量中。dim = 0,表示从列开始循环,每一列选择对应的元素,我这里从行开始,每一行按照0, 3, 2的索引顺序选择元素,最终组成 4 x 3 的矩阵。消去维度,这个理解不难,比如一个张量(2,2,3)去除第三个维度,会形成三个(2,2)的张量,就是成员变量。要把整个张量看作是一个一维数组,所以传递的张量数组是一维的,选择对应的元素作为输出,输出结果和 masked_select 一样,是一个向量。
2025-06-04 13:21:05
1069
原创 pytorch学习之矩阵分解
这篇文章主要介绍了矩阵分解在深度学习中的应用,重点讨论了EVD特征值分解与PCA降维算法,以及SVD奇异值分解与LDA判别分析的关系。EVD分解用于PCA降维,通过保留最大特征值对应的特征向量来实现特征选择;SVD分解则与LDA算法相关,通过最大化类间离散度和最小化类内离散度来优化分类性能。文章还简要提及了LU分解和QR分解等其他矩阵分解方法,并指出不同分解方法适用的场景。全文以线性代数为理论基础,阐述了矩阵分解在特征降维和模式识别中的核心作用。
2025-06-02 20:00:57
723
原创 计算机视觉应用 Slot Attention
slot attention 是计算机视觉应用领域的算法,我们知道计算视觉应用是在模仿人类的视觉识别过程。像胶囊神经网络关注结构性学习,对以对象为中心的表征学习很困难,而这也是我们人类的视觉识别模式。为了让人工智能视觉识别更加接近人类,提出slot attention 这个学习组件插槽算法,以对象为中心的表征学习,来捕捉自然场景中的自然属性。
2025-05-25 22:13:31
956
原创 Vue 学习第一天
毕业时,因为前端很丑折磨了好一段时间。现在有时间,学习一下前端的Vue组件开发。下面是我记录的知识,学习来源是哔站的黑马老师,大家不懂可以点对点去学习。
2025-01-01 22:14:23
952
原创 Java EE 企业级应用开发教程题库(第二版)
Java EE这是一门偏向于实践的课,奈何考试理论居多。Mybatis,Spring,SpringMVC一学期想搞懂三个框架,嘿嘿,难哦!如果你是大一大二的同学,认认真真学习,真的有用。如果你是大三的同学,像就业并且走这个方向的同学,也认真学习。如果你大三考研的同学,自己安排时间。这里是我平时的五个作业,建立成一个题库供大家搜索。里面的答案部分很怪,但就是给的标答,大家可以找老师商讨。使用法则:Ctrl + F 键搜索你需要的题目。
2023-06-12 15:50:05
9979
1
原创 数据挖掘期末复习
数据挖掘期末考试会给考纲,不同学校可能有所不同,大家看问题选取所需。另外有不正确的地方,或者遗漏的地方希望大家在评论区斧正和补充。
2022-11-27 17:35:10
2303
原创 聚类分析的基本概念和方法
结合《数据挖掘概念与技术》这本著作,讲解里面聚类的相关概念,详细讲解三个算法:k-均值,k-中心,DBSCAN,只涉及基础思想。重点体会三个算法的思想,聚类基本概念作为积累知识点,看得多积累多。
2022-11-26 18:00:03
4786
原创 Python123 期末题库
本篇文章记录在 Python123 上面的题库,代码仅供参考,题量除了学校作业之外还去收集了一些。对有益处的同学可以收藏一下,把感受写在评论区,切勿关注,社恐谢谢!搜索 ctrl+F 搜索定位你的题目,不对就换博主。
2022-11-12 10:40:22
45963
5
原创 ROC 曲线介绍以及 python 画法
本篇文章结合数据挖掘第八章的理论知识,结合博主拟禾的代码讲解了 ROC 曲线从概念到实现的过程,多算法 ROC 曲线比较。
2022-11-01 19:26:24
15367
7
原创 Python123 第二次实验课
实验二相对而言还是简单,最后一题稍微有一丢难度。我们通过此次实验知道字符串怎么用,怎么进行拼接和分割,其次便是 if 判断语句熟练掌握。
2022-09-27 18:38:02
2470
原创 Python3 数据类型转化
很多时候,我们编程需要对数据进行强制转换。在 Python3 中,强制转换和 Java 、C 语言一样分成两种:隐式的转换、和显示的转换。不同点就是他们的语法规则稍有区别。这篇文章分成三个部分来说,隐式转换 (最简单)、显试转换 (有其他语言基础 easy) 、转换表(记不住就多看表)
2022-09-20 09:17:47
932
原创 大数据分析实验代码
有很多同学使用虚拟机无法通过 windows 和 Linux 共享复制粘贴板。实现起来可能比较麻烦,这里所给的代码是实验的测试代码。
2022-09-19 15:20:08
1412
原创 Ubuntu 网络用不了
我做实验作业需要改一些配置文件或一些系统设置。也不知道哪里出了问题,网络就用不了了,倒腾了一天,现在把我遇到的情况和解决办法说一下。
2022-09-16 09:16:03
1944
4
原创 Python 实验二上篇基础系列
Python3 中有 6 个标准的数据类型:**Number (数字)、String (字符串)、Tuple (元组)、List (列表)、Set (集合)、Dictionary (数组)。** 其中前面三个是不可变数据,后面三个是可变数据。这里为初学者罗列说明。
2022-09-14 23:16:58
568
原创 矩阵的基本演算
这篇文章主要介绍了矩阵的一些基本演算,导数,奇异值分解。这里只是作为粗略的复习,详细的推导还请参考线性代数有关的专业书籍。一、矩阵演算 记是矩阵 A ∈ Rm×n\mathbb{R}^{m\times n}Rm×n 第 i 行第 j 列的元素(AijA_{ij}Aij)= AijA_{ij}Aij.矩阵 AAA 转置记作 ATA^TAT.转置运算:(AT)ij=Aji(A^T)_{ij} = A_{ji}(AT)ij=Aji,那么有以下两个法则(A+B)T=AT+BT(AB)T=BTA
2022-05-16 20:25:27
397
原创 ALEC 代码(含注释)
简述 主动学习算法ALEC,如果你已经了解了概念,那么这个代码部分将非常适合你深度学习。讲解文章在点击这里。代码package machinelearning.activelearning;import java.io.FileReader;import java.util.Arrays;import weka.core.Instances;import java.util.*;public class Alec { /** * 整个数据集 */ Instances datas
2022-05-11 15:41:48
557
2
原创 主动学习ALEC算法——Java之旅
主动学习 ALEC,如果你对概念了解了,这里面是代码运行讲解。如果不了解,里面有概念讲解的链接,看完概念看此文。这篇文章附上了代码部分,对ALEC算法进行了一个细致讲解。其中重点讲了核心的方法,难点的寻址部分已经附上了说明图。
2022-05-11 15:27:08
332
原创 决策树——Java代码之旅
一、主类成员认识 我们概念讲解是在这里,下面便是成员变量。我们一点一点看,最后拉通走一遍。整个程序我是顺序运行的,给一个标题方便大家去找对应的方法public class ID3 { /** * 数据集 */ Instances dataset; /** * 这个数据集是纯的(只有一个标签)? */ boolean pure; /** * 决策类的数量. 二元分类它是2:0,1. */ int numClasses; /** * 可用实例。 其它实例不属
2022-05-08 13:21:32
1819
1
原创 主动学习算法——ALEC
一、概述 我们知道监督学习就是给定标签类型去分类,建立学习模型,例如Knn,而无监督学习就是给分类的标签,你随便分,只要有你分类的依据就好,例如K-means算法,你可以把一堆没有标签的数据分成2,3,4类等等。半监督学习什么呢?我们来举个例子:我们面对很多病人,我一个小白要给他判断病情,我去瞎猜可不行不专业,上百度一出来就是癌症起步。这种情况下咋办?那就找专业的医生呗,我看他怎么分析,对每种病人如何判断,这种病人有什么病状。你想想看,求人不如求己,拜佛不如拜我,对吧,请别人需要代价的啦,病人多,你每次
2022-05-07 19:33:12
1115
原创 机器学习——模型评估和选择
这里需要我们一起来,头脑中回想一下什么是误差?过拟合欠拟合的定义?为了评估学习器的优劣,有哪些方法?性能量度有哪些呢?文章有点长,大家梳理一下吧。
2022-04-09 19:37:35
1916
原创 公钥密码RSA
公钥加密体制模型发送方A查找接收方B的公钥;A采用公钥加密算法用B的公钥对明文进行加密;A通过不安全信道将密文发送给B;B收到密文后使用自己的私钥对密文解密还原出明文。单向陷门函数给定x,计算 y=f(x) 是容易的给定y,计算 x 使得 y=f(x) 是困难的存在δ,已知δ时,对给定的任何y,若相应的x存在,则计 算 x 使 y=f(x) 是容易。注意:仅满足(1)、(2)两条的称为单向函数;第(3)条称为陷门性,δ 称为陷门信 息。. 当用陷门函数f作为加密函数时,可将
2022-03-27 15:01:32
1482
原创 贝叶斯公式到拉普拉斯光滑的理解
1.学习感悟:还没有正式接触概论课,初始机器学习遇到了第一个难题,NB算法中的贝叶斯公式。说一句实话,学问这东西一定要平心静气,自己认为看懂了不管了那才是危险所在。不要自大,不要浮躁气馁,这是我的教训。所以我写这篇文章来认真学习里面的每一个点,包括了公式的由来,我以高中的知识和老师给我的讲解来理解,初学者有错指出来我乐意改正。2.基础介绍回到正题,机器学习中我们传入数据。如下面这个:@relation weather.symbolic@attribute outlook {sunny,
2022-03-12 12:58:38
1924
原创 初学分类算法-NB
说道分类算法-NB,我要从两个方面入手,第一什么是分类问题?第二什么是NB算法?分类问题:1.1 二值问题:就是 0,1是与否的问题和回归(概率,分数值)问题。前者我们很好理解,我们用淘宝举个例子,买东西我们要搜索对吧,那么这个商品能不能推荐给你是不是只有两种可能,推荐或者不推荐嘛。可如果符合你胃口的商品有很多件,实际情况也是这样,那么要把最适合你的这类商品推荐给你,就存在一个拟合度,涉及到回归问题和概率的问题了。回归问题这里比如有一个域值:0.8,我们对商品进行预测只有大于0.8说明这商品多半是你
2022-03-11 23:33:58
822
原创 初识kMeans 聚类
概念引入:我们前面讲到了knn算法,我们手里都是有一个标签,给出数据我们朝着标签方向优化,使得未知属性的数据预测其属于哪一类标签。现在问题来了,无监督学习,也就是我们手里的数据并没有属于哪一类的标签。其实,这和我们分类的效果是差不多的。我们还是要把杂乱的数据分成很多簇,聚类就是要把相似的东西分到一组。比如说这张图片:我们可以按照颜色大致分成A,B,C,D四块这种思想还是挺简单的吧,可是实现起来还是有一些难点:如何评估,如何调参。之前的有监督学习我们还可以做一个验证,然后产生一个评估标准。
2022-03-01 15:15:22
524
数据挖掘期末复习资料,主要涵盖期末复习的知识点
2022-11-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人