mmdetection3d模型框架解读

复现和理解pointpillar算法和VoxelNet之后,下面对mmdetection3d的模型框架进行解读。

该篇文章参考:带你玩转 3D 检测和分割(一):MMDetection3D 整体框架介绍_用mmdetion3d写一个简单的语义分割模型-CSDN博客

以下是本人在学习3D目标检测过程中的一些过程记录和理解,仅供大家参考:

基于kitti数据集的3D目标检测算法复现流程:基于kitti数据集的3D目标检测算法的训练流程_pointpillar训练kitti数据集-CSDN博客

pointpillar文献理解:PointPillars文献理解_pillar feature net-CSDN博客

VoxelNet文献理解:VoxelNet文献理解-CSDN博客


目录

一、前言

(一) configs

(二) mmdet3d

(三) tools

(四)work_dirs

二、任务介绍

三、算法模型支持

(一)点云3D检测(以及多模态3D检测)

(二)纯视觉3D检测

(三)点云3D语义分割

四、数据预处理

五、模块抽象

(一)Pipeline

(二)Model

(1)点云 3D 检测模型

(2)单目 3D 检测模型

(3)多模态 3D 检测模型

(4) 点云 3D 语义分割模型

六、训练和测试流程

(一)train和val流程

(二)test流程


一、前言

由于 3D 本身数据的复杂性和 MMDetection3D 支持任务(点云 3D 检测、单目 3D 检测、多模态 3D 检测和点云 3D 语义分割等)和场景(室内和室外)的多样性,整个框架结构相对复杂,新人用户的上手门槛相对较高。所以我们推出新的系列文章,让各个细分方向的用户都能轻松上手 MMDetection3D,基于框架进行自己的研究和开发。

首先展示整个代码库的目录结构,方便初步认识:

# MMDetection3D 代码目录结构,展示主要部分 
mmdetection3d 
   | 
   |- configs                    # 配置文件 
   |- data                       # 原始数据及预处理后数据文件 
   |- mmdet3d  
   |     |- ops                  # cuda 算子(即将迁移到 mmcv 中) 
   |     |- core                 # 核心组件 
   |     |- datasets             # 数据集相关代码 
   |     |- models               # 模型相关代码 
   |     |- utils                # 辅助工具 
   |     |- ... 
   |- tools 
   |     |- analysis_tools       # 分析工具,包括可视化、计算flops等 
   |     |- data_converter       # 各个数据集预处理转换脚本 
   |     |- create_data.py       # 数据预处理入口 
   |     |- train.py             # 训练脚本 
   |     |- test.py              # 测试脚本 
   |     |- ...                       
   |- ... 

在编辑器上可以看到更为完全的目录结构:

图1.1:完整mmdetection3d目录结构

其中常用的有configs、mmdet3d、tools和work_dirs四个文件夹。其中visualization文件夹是我在进行数据集可视化时创建的,kitti数据集的可视化可以参考这篇博客:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值