前言
学以致用,乐趣无穷。手机中现有照片都copy到PC备份,腾出空间,但是这些照片有些重复,有些无用,有些存在曝光问题,我能否自己做个程序自动帮我识别出高质量的图片保存,其它照片删除呢?
为了达成这个应用目的,我进行了任务拆分,首要要识别图片质量,有没有标准呢?就是说图像质量标准是什么呢?网上还真的搜索到了,包括有图像分析软件lmatest等。接着就是自动处理图片,然后按我的标准进行高质量图片分类。
图像分析
今天的主题围绕图像分析,图像的三要素包括亮度,对比图,饱和度。今天就是要用代码来分析出图像的灰度直方图。
主要函数
包括calcHist计算灰度直方图和normalize归一化
C++:voidcalcHist(const Mat* images,int nimages,constint* channels, InputArray mask, OutputArray hist,int dims,constint* histSize,constfloat** ranges, bool uniform=true, bool accumulate=false )
参数详解:
onst Mat* images:输入图像
int nimages:输入图像的个数
constint* channels:需要统计直方图的第几通道
InputArray mask:掩膜,,计算掩膜内的直方图 ...Mat()
OutputArray hist:输出的直方图数组
int dims:需要统计直方图通道的个数
constint* histSize:指的是直方图分成多少个区间,就是 bin的个数
constfloat** ranges: 统计像素值得区间
bool uniform=true::是否对得到的直方图数组进行归一化处理
bool accumulate=false:在多个图像时,是否累计计算像素值得个数
void cv::normalize(InputArry src,InputOutputArray dst,double alpha=1,double beta=0,int norm_type=NORM_L2,int dtype=-1,InputArray mark=noArry())
参数说明
src 输入数组;
dst 输出数组,数组的大小和原数组一致;
alpha 1,用来规范值,2.规范范围,并且是下限;
beta 只用来规范范围并且是上限;使用范围归一化时,beta必有值不等于0。
norm_type 归一化选择的数学公式类型;
dtype 当为负,输出在大小深度通道数都等于输入,当为正,输出只在深度与输如不同,不同的地方游dtype决定;
mark 掩码。选择感兴趣区域,选定后只能对该区域进行操作。
备注:直接传递Mat(),代表为空。图像中的坐标(0,0)在左上角,向下为y轴数值增大的方向,向右为x轴数值增大的方向。
实现代码
#include"stdafx.h"#include<opencv2/imgproc.hpp>#include<opencv2/highgui.hpp>
using namespace std;
using namespace cv;intmain(){
Mat srcImage =imread("D:\\vcpro\\opencv\\pic\\IMG_20191013_104201.jpg", IMREAD_GRAYSCALE);//IMREAD_COLOR); // 直接导入图像为单通道灰度图imshow("【原图】", srcImage);int channels =0;
MatND dstHist;//接下来是直方图的每一个维度的柱条的数目 int histSize[]={256};//定义变量用来存储单个维度的数值的取值范围 float midRanges[]={0,256};constfloat*ranges[]={ midRanges };calcHist(&srcImage,1,&channels,Mat(), dstHist,1, histSize, ranges, true, false);//dstHist变量中将储存了直方图的信息;//用dstHist的模版函数 at<Type>(i)得到第i个柱条的值 int hist_h =400;//rowint hist_w =512;//colint bin_w = hist_w / histSize[0];
Mat histImage(hist_h, hist_w, CV_8UC3,Scalar(0,0,0));normalize(dstHist, dstHist,0, hist_h, NORM_MINMAX,-1,Mat());for(int i =0; i < histSize[0]; i++){//line(histImage, Point(i*bin_w, 400), Point(i*bin_w, 390), Scalar(255, 0, 0));line(histImage,Point(i*bin_w, hist_h),Point((i)*bin_w, hist_h -cvRound(dstHist.at<float>(i))),Scalar(255,0,0));}imshow("【直方图】", histImage);waitKey(0);return0;}
直方图效果

效果.png
链接:https://www.jianshu.com/p/1945be43a959