300.最长递增子序列
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size(); // 获取数组的长度
if (n == 0) return 0; // 如果数组为空,返回 0
// 1. 定义 dp 数组:dp[i] 表示以 nums[i] 为结尾的最长递增子序列的长度
vector<int> dp(n, 1); // 初始化 dp 数组,初始每个位置的子序列长度为 1
int ans = 1; // 最长递增子序列的最大长度,初始为 1(至少有一个元素)
// 2. 遍历每个元素,进行状态转移
for (int i = 1; i < n; i++) { // 外层循环遍历所有元素
for (int j = 0; j < i; j++) { // 内层循环遍历比 i 小的所有元素
// 3. 更新 dp[i]:如果 nums[i] > nums[j],则可以形成更长的递增子序列
if (nums[i] > nums[j]) {
dp[i] = max(dp[i], dp[j] + 1); // 选择最大值,dp[i] 表示以 nums[i] 结尾的最大递增子序列
}
}
// 4. 更新 ans:保持目前找到的最大递增子序列的长度
ans = max(ans, dp[i]);
}
// 5. 返回最大递增子序列的长度
return ans;
}
};
674. 最长连续递增序列
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
vector<int> dp(nums.size(),0);
dp[0]=1;
int ans=1;
for(int i=1;i<nums.size();i++)
{
if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
else dp[i]=1;
ans=max(ans,dp[i]);
}
return ans;
}
};
718. 最长重复子数组
class Solution {
public:
int findLength(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(); // 获取 nums1 数组的长度
int n = nums2.size(); // 获取 nums2 数组的长度
// 2. 初始化 dp 数组,dp[i][j] 表示 nums1[0...i-1] 和 nums2[0...j-1] 的最长公共后缀子数组的长度
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0)); // 初始化大小为 (m+1) x (n+1) 的二维数组
int ans = 0; // 用于存储最大公共子数组的长度
// 3. 遍历 nums1 和 nums2,计算 dp 数组的值
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
// 4. 状态转移方程:如果 nums1[i-1] == nums2[j-1],则公共子数组长度加 1
if (nums1[i - 1] == nums2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
// 5. 更新最大公共子数组长度
ans = max(ans, dp[i][j]);
}
}
// 6. 返回最长公共子数组的长度
return ans;
}
};