代码随想录day43dp10

300.最长递增子序列

题目链接
文章讲解

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();  // 获取数组的长度
        if (n == 0) return 0;  // 如果数组为空,返回 0
        
        // 1. 定义 dp 数组:dp[i] 表示以 nums[i] 为结尾的最长递增子序列的长度
        vector<int> dp(n, 1);  // 初始化 dp 数组,初始每个位置的子序列长度为 1
        int ans = 1;  // 最长递增子序列的最大长度,初始为 1(至少有一个元素)

        // 2. 遍历每个元素,进行状态转移
        for (int i = 1; i < n; i++) {  // 外层循环遍历所有元素
            for (int j = 0; j < i; j++) {  // 内层循环遍历比 i 小的所有元素
                // 3. 更新 dp[i]:如果 nums[i] > nums[j],则可以形成更长的递增子序列
                if (nums[i] > nums[j]) {
                    dp[i] = max(dp[i], dp[j] + 1);  // 选择最大值,dp[i] 表示以 nums[i] 结尾的最大递增子序列
                }
            }
            // 4. 更新 ans:保持目前找到的最大递增子序列的长度
            ans = max(ans, dp[i]);
        }

        // 5. 返回最大递增子序列的长度
        return ans;
    }
};

674. 最长连续递增序列

题目链接
文章讲解

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
      
        vector<int> dp(nums.size(),0);
        dp[0]=1;
        int ans=1;
        for(int i=1;i<nums.size();i++)
        {
            if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
            else dp[i]=1;
            ans=max(ans,dp[i]);
        }
        return ans;
    }
};

718. 最长重复子数组

题目链接
文章讲解

class Solution {
public:
    int findLength(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size();  // 获取 nums1 数组的长度
        int n = nums2.size();  // 获取 nums2 数组的长度

        // 2. 初始化 dp 数组,dp[i][j] 表示 nums1[0...i-1] 和 nums2[0...j-1] 的最长公共后缀子数组的长度
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));  // 初始化大小为 (m+1) x (n+1) 的二维数组
        int ans = 0;  // 用于存储最大公共子数组的长度

        // 3. 遍历 nums1 和 nums2,计算 dp 数组的值
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // 4. 状态转移方程:如果 nums1[i-1] == nums2[j-1],则公共子数组长度加 1
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }
                // 5. 更新最大公共子数组长度
                ans = max(ans, dp[i][j]);
            }
        }

        // 6. 返回最长公共子数组的长度
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值