代码随想录day23回溯算法2

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

39. 组合总和

题目链接
文章讲解

class Solution {
public:
    vector<vector<int>> ans;  // 存储所有符合条件的组合
    vector<int> path;         // 当前组合路径
    int sum = 0;              // 当前路径和

    // 回溯函数
    void solve(int target, int n, int start, int sum, vector<int>& candidates) {
        // 如果当前和超过目标,返回
        if (sum > target) {
            return;
        }

        // 如果当前和等于目标,将路径加入结果
        if (sum == target) {
            ans.push_back(path);
            return;
        }

        // 遍历候选数组,从 start 开始,避免重复
        for (int i = start; i < n; i++) {
            path.push_back(candidates[i]);  // 选择当前数字
            sum += candidates[i];           // 更新和

            solve(target, n, i, sum, candidates);  // 递归

            sum -= candidates[i];           // 回溯,撤销选择
            path.pop_back();                // 回溯,移除最后一个数字
        }
    }

    // 主函数
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        int n = candidates.size();
        solve(target, n, 0, 0, candidates);  // 从 0 开始递归
        return ans;  // 返回所有组合
    }
};

40. 组合总和 II

题目链接
文章讲解

class Solution {
public:
    vector<vector<int>> ans;  // 存储所有符合条件的组合
    vector<int> path;         // 当前组合路径

    // 回溯函数,递归生成组合
    void solve(int target, vector<int>& candidates, int sum, int start) {
        // 如果当前和超过目标,返回
        if (sum > target) {
            return;
        }

        // 如果当前和等于目标,将路径加入结果
        if (sum == target) {
            ans.push_back(path);
            return;
        }

        // 遍历候选数组
        for (int i = start; i < candidates.size(); i++) {
            // 跳过相同的数字,避免重复组合
            if (i > start && candidates[i] == candidates[i - 1]) {
                continue;
            }
            
            path.push_back(candidates[i]);  // 选择当前数字
            sum += candidates[i];           // 更新和

            solve(target, candidates, sum, i + 1);  // 递归调用,i + 1 确保每个数字只能使用一次

            sum -= candidates[i];           // 回溯,撤销选择
            path.pop_back();                // 回溯,移除最后一个数字
        }
    }

    // 主函数,返回所有符合条件的组合
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        sort(candidates.begin(), candidates.end());  // 排序,帮助去重
        solve(target, candidates, 0, 0);  // 从 0 开始递归
        return ans;  // 返回所有组合
    }
};

131. 分割回文串

题目链接
文章讲解

class Solution {
public:
    vector<vector<string>> ans;  // 存储所有回文分割结果
    vector<string> path;         // 当前的回文分割路径

    // 判断字符串是否是回文
    bool isPalindrome(string& s, int start, int end) {
        while (start < end) {
            if (s[start] != s[end]) return false;
            start++;
            end--;
        }
        return true;
    }

    // 回溯函数,递归生成所有回文分割
    void dfs(string& s, int start) {
        if (start == s.size()) {  // 如果已经分割完所有字符串,加入结果
            ans.push_back(path);
            return;
        }

        for (int i = start; i < s.size(); i++) {
            // 如果当前子串是回文
            if (isPalindrome(s, start, i)) {
                path.push_back(s.substr(start, i - start + 1));  // 加入子串
                dfs(s, i + 1);  // 递归处理下一个部分
                path.pop_back();  // 回溯,撤销选择
            }
        }
    }

    // 主函数
    vector<vector<string>> partition(string s) {
        dfs(s, 0);  // 从索引0开始进行回溯
        return ans;  // 返回所有回文分割的结果
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值