一、AI 到底是什么?
AI,即人工智能(Artificial Intelligence) ,是计算机科学的一个分支,它致力于开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统。简单来说,就是让计算机像人类一样思考、学习和决策。
举个例子,当你使用智能语音助手,像苹果的 Siri、小米的小爱同学,你跟它们说 “帮我定个明天早上 8 点的闹钟”,或者 “播放一首周杰伦的歌” ,它们能理解你的语言指令,并执行相应操作,这背后就是 AI 技术在发挥作用。通过自然语言处理技术,语音助手把你的语音转化成文字,理解其中的含义,然后调用相应的功能来完成任务。
还有我们日常使用的电商平台、视频网站,它们会根据你的浏览历史、购买记录等数据,给你推荐可能感兴趣的商品、视频,这也是 AI 的功劳。推荐系统利用机器学习算法,分析大量用户数据,挖掘出用户的行为模式和兴趣偏好,从而实现个性化推荐。
二、AI 发展历程回顾
AI 的发展历程就像一部充满曲折与惊喜的科技史诗,从早期的理论探索,到如今的广泛应用,每一步都凝聚着无数科研人员的智慧与努力 。
AI 的起源可以追溯到 20 世纪 40 年代。1943 年,沃伦・麦卡洛克(Warren McCulloch)和沃尔特・皮茨(Walter Pitts)提出了人工神经网络的基本模型,为 AI 的发展奠定了理论基础。就像为一座宏伟的大厦打下了第一根坚实的桩基。随后,1950 年艾伦・图灵(Alan Turing)提出了著名的 “图灵测试”,设想了一个判断机器是否具有真正智能的测试方法,这一概念的提出,如同一颗启明星,为 AI 的发展指明了方向,激发了人们对机器智能的无限遐想。
1956 年,是 AI 发展史上具有里程碑意义的一年。这一年,在达特茅斯会议上,“人工智能” 这一术语被首次提出,标志着 AI 正式成为一个独立的研究领域。从此,AI 开启了它的传奇之旅。在随后的黄金时代(1956 - 1974),得益于计算机技术的进步和大量的研究资金投入,AI 取得了显著的进展。专家系统开始崭露头角,它们能够模拟人类专家的决策过程,解决特定领域的复杂问题。例如,DENDRAL 系统在化学领域的应用,成功地预测了有机化合物的结构,就像一位不知疲倦的化学家,能够快速准确地分析各种复杂的化学物质。
然而,AI 的发展并非一帆风顺。在 1974 - 1980 年,由于高昂的研究成本、实际应用的缺乏以及过度的期待导致的失望,AI 研究进入了停滞状态,这一时期被称为 “AI 冬天”。就像一位疲惫的行者,在漫长的旅途中遭遇了严寒的冬季,不得不放慢脚步,积蓄力量。但科学家们并没有放弃,他们在困境中不断探索和反思,为 AI 的再次崛起埋下了希望的种子。
20 世纪 80 年代,AI 迎来了专家系统时代(1980 - 1987)。人工智能专家系统得到了广泛的应用,这些系统模拟人类专家的决策过程,为特定任务提供咨询。比如,卡耐基梅隆大学为日本 DEC 公司设计的 XCON 专家规则系统,专门用于选配计算机配件,为该公司一年节省了数千万美金,展现出了 AI 在实际应用中的巨大价值。但好景不长,由于经济和技术原因,AI 在 1987 - 1993 年再次进入低谷,第二次 “AI 冬天” 来临。
直到 20 世纪 90 年代,随着计算机处理能力的提升和大数据的出现,机器学习,特别是神经网络,重新引起了人们的关注,AI 迎来了新的春天。1997 年,IBM 的 “深蓝” 超级计算机击败国际象棋世界冠军卡斯帕罗夫,这一标志性事件震惊了全世界,它标志着在计算智能领域计算机已经超过人类,也让人们看到了 AI 的巨大潜力。“深蓝” 就像一位横空出世的棋坛高手,以其强大的计算能力和精准的决策,战胜了人类顶级棋手,让人们对 AI 的未来充满了期待。
进入 21 世纪,AI 的发展更是日新月异。2012 年,AlexNet 在图像分类比赛 ImageNet 上取得了突破性的成果,标志着深度学习时代的来临。深度学习技术就像一把神奇的钥匙,打开了 AI 通往各个领域的大门。此后,AI 在语音识别、自然语言处理、图像识别等领域取得了飞速发展。2016 年,DeepMind 公司的 AlphaGo 击败围棋世界冠军李世石,再次掀起了全球对 AI 的关注热潮。AlphaGo 利用深度学习和强化学习技术,通过大量的自我对弈学习,掌握了围棋的精妙策略,它的胜利证明了 AI 在复杂游戏领域的能力,也让人们深刻认识到 AI 已经不再是简单的程序,而是能够在复杂的环境中学习和决策的智能体。
2022 年底,ChatGPT 的推出更是引发了全球范围内的 AI 热潮。它基于大规模预训练模型,能够生成自然流畅的文本,回答各种问题,进行对话交流,让人们真切地感受到了 AI 的强大和智能。ChatGPT 就像一个知识渊博的智者,无论你问它什么问题,它都能给出详细而准确的回答,甚至还能帮你创作文章、编写代码等,极大地改变了人们与计算机交互的方式。
三、常见 AI 工具大盘点
(一)自然语言处理类
•ChatGPT:OpenAI 开发的语言模型,基于 GPT-3.5 架构,拥有强大的文本生成和对话处理能力。它的训练采用大规模的互联网和新闻等公共领域数据,使其能够理解和生成自然语言文本。在实际应用中,它可以帮你撰写论文大纲、创作小说故事、翻译文档等。比如,你要写一篇关于人工智能发展趋势的论文,只需要输入 “帮我生成一篇人工智能发展趋势论文的大纲” ,它就能快速生成一个逻辑清晰的大纲。但它对中文的处理能力相对较弱,国内用户使用时也不太方便。
•文心一言:百度基于文心大模型技术推出的生成式对话产品,它在中文语料库的训练和优化方面具有优势,能够更好地理解和处理中文语言,为用户提供更有文化内涵的交互体验。同时,还提供了更多的文化知识和传统文化的介绍,让用户了解更多关于中华文化的知识。如果你想写一首关于春天的古诗,它能快速生成一首富有意境的作品。但它在非中文语境和跨语种的理解能力上相对较弱。
(二)图像生成类
•Midjourney:这是一个基于人工智能的图像生成平台,允许用户通过简单的文本描述生成高质量的图像。它生成的图像质量高、富有创意,艺术风格多样,支持生成油画、素描、卡通等不同风格的图像,适合快速生成艺术创作、概念草图等。比如输入 “未来城市的科幻场景,高楼大厦林立,空中有飞行汽车”,它就能生成一幅充满想象力的科幻城市画面。它的操作也很简单,通过 Discord 平台即可使用,学习成本较低。不过它的使用成本相对较高,且生成的画面风格相对固定,缺乏自定义的插件或模型。
•Stable Diffusion:一种基于扩散模型的图像生成技术,是开放源代码的项目,提供了强大的图像生成能力,可以生成高度详细和现实感强的图像。它支持多种输入方式,包括文本描述、草图等,能够生成高度定制化的图像,适合专业领域的应用,如电影特效、广告设计等。它的优势在于高度自定义,用户可以通过自定义训练模型,实现特定风格的内容生成,还支持插件和 LORA,使得用户可以随心所欲地换风格和形态,产出大量不同的图片。但它需要下载并部署在本地,对本地硬件性能有一定要求,尤其是显卡,上手难度也相对较高 。
(三)办公效率类
•Gamma:一款基于人工智能的内容生成工具,专注于帮助用户快速创建高质量的演示文稿、长文和视觉化内容。使用时,你只需输入一个主题,它就可以自动生成内容丰富、结构完整的 PPT。整个过程无需下载软件,在线即可完成制作和编辑。它还能根据用户提供的主题或关键词,自动生成 PPT 的框架和内容建议,大大缩短了前期准备时间,系统会根据内容特点,推荐最适合的设计模板,确保 PPT 的视觉效果与内容主题高度契合,还能智能调整文字、图片的布局,保证每一页 PPT 都美观大方,省去了手动调整的烦恼。此外,它还支持多人同时在线编辑,提高团队协作效率。不过,Gamma 对国内用户不太友好,站点架设在海外,访问存在延迟,免费版使用次数有限,订阅价格较高且付款方式较少。