迷宫问题,最短路径(递归实现)

本文介绍了一种使用Java实现的递归回溯算法,通过模拟迷宫来展示如何寻找从起点到终点的路径。代码中定义了两种不同的搜索策略,分别是下->右->上->左和上->右->下->左。当找到通路时,会在地图上标记为2,无法通行则标记为3。此外,还展示了如何输出原始地图和经过小球走过的地图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码实现

package com.atguigu.recursion;

public class MiGong {

	public static void main(String[] args) {
		// 先创建一个二维数组,模拟迷宫
		// 地图
		int[][] map = new int[8][7];
		// 使用1 表示墙
		// 上下全部置为1
		for (int i = 0; i < 7; i++) {
			map[0][i] = 1;
			map[7][i] = 1;
		}

		// 左右全部置为1
		for (int i = 0; i < 8; i++) {
			map[i][0] = 1;
			map[i][6] = 1;
		}
		//设置挡板, 1 表示
		map[3][1] = 1;
		map[3][2] = 1;
		map[3][5] = 1;
//		map[1][2] = 1;
//		map[2][2] = 1;
		
		// 输出地图
		System.out.println("地图的情况");
		for (int i = 0; i < 8; i++) {
			for (int j = 0; j < 7; j++) {
				System.out.print(map[i][j] + " ");
			}
			System.out.println();
		}
		
		//使用递归回溯给小球找路
		//setWay(map, 1, 1);
		setWay2(map, 1, 1);
		
		//输出新的地图, 小球走过,并标识过的递归
		System.out.println("小球走过,并标识过的 地图的情况");
		for (int i = 0; i < 8; i++) {
			for (int j = 0; j < 7; j++) {
				System.out.print(map[i][j] + " ");
			}
			System.out.println();
		}
		
	}
	
	//使用递归回溯来给小球找路
	//说明
	//1. map 表示地图
	//2. i,j 表示从地图的哪个位置开始出发 (1,1)
	//3. 如果小球能到 map[6][5] 位置,则说明通路找到.
	//4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙  ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
	//5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
	/**
	 * 
	 * @param map 表示地图
	 * @param i 从哪个位置开始找
	 * @param j 
	 * @return 如果找到通路,就返回true, 否则返回false
	 */
	public static boolean setWay(int[][] map, int i, int j) {
		if(map[6][5] == 2) { // 通路已经找到ok
			return true;
		} else {
			if(map[i][j] == 0) { //如果当前这个点还没有走过
				//按照策略 下->右->上->左  走
				map[i][j] = 2; // 假定该点是可以走通.
				if(setWay(map, i+1, j)) {//向下走
					return true;
				} else if (setWay(map, i, j+1)) { //向右走
					return true;
				} else if (setWay(map, i-1, j)) { //向上
					return true;
				} else if (setWay(map, i, j-1)){ // 向左走
					return true;
				} else {
					//说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}
	
	//修改找路的策略,改成 上->右->下->左
	public static boolean setWay2(int[][] map, int i, int j) {
		if(map[6][5] == 2) { // 通路已经找到ok
			return true;
		} else {
			if(map[i][j] == 0) { //如果当前这个点还没有走过
				//按照策略 上->右->下->左
				map[i][j] = 2; // 假定该点是可以走通.
				if(setWay2(map, i-1, j)) {//向上走
					return true;
				} else if (setWay2(map, i, j+1)) { //向右走
					return true;
				} else if (setWay2(map, i+1, j)) { //向下
					return true;
				} else if (setWay2(map, i, j-1)){ // 向左走
					return true;
				} else {
					//说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}

}

 

if (i == 6 && j == 5) {//说明已经找到路了
    //添加终点坐标
    step.add(i);
    step.add(j);
    //这里的step如果不new list(step)的话当栈空间全部退出指向的step堆空间也没了,jvm垃圾回收
    //此时的mapList是个空集合
    //但是如果new了个空间进去这样他每次指向的都是新的空间
    mapList.add(new ArrayList<>(step)); //将当前走法存到list,一定要new一个新的堆空间,不然所有栈都是指向一个step,保留结果也只保留最后一个方案
    //要注意回溯,否则得到结果之后,将不在继续进行
    step.remove(step.size() - 1);
    step.remove(step.size() - 1);
}
if (map[i][j] == 0) {
    //添加走过的路径
    step.add(i);
    step.add(j);
    //注意这里一定要有个走过这条路线的证明
    map[i][j] = 2;
    //约定一个顺序,下右上左
    //不加if就不限制走法了
    //如果加if else那么每次递归只能走一种走法
    setWay(map, i + 1, j, step);//下
    setWay(map, i, j + 1, step);//右
    setWay(map, i - 1, j, step);//上
    setWay(map, i, j - 1, step);//左
    //回溯
    //如果运行到这说明当前走法已经抵达终点,并且弹出终点栈回溯到这个位置继续进行回溯
    map[i][j] = 0;//当前走法,走几次,每回溯一次都会将走过的位置滞为0
    step.remove(step.size() - 1);
    step.remove(step.size() - 1);

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值