【LeetCode 热题 100】42. 接雨水——(解法二)双指针

Problem: 42. 接雨水

【LeetCode 热题 100】42. 接雨水——(解法一)前后缀分解
【LeetCode 热题 100】42. 接雨水——(解法三)单调栈

整体思路

这段代码采用了双指针法来解决“接雨水”问题,这是一种空间复杂度更优的解法。其核心思想是在一次遍历中,通过动态维护左右两侧的最高墙,来计算每个位置可以接的雨水。

代码的整体思路可以分解为以下步骤:

  1. 核心问题
    与前一个方法一样,代码旨在计算由数组 height 代表的柱子能接住的总雨水量。其基本原理不变:在任何一个位置 i,能接的雨水量取决于其左侧最高墙右侧最高墙的较小者与当前墙高度的差,即 min(left_max, right_max) - height[i]

  2. 双指针算法
    此算法的核心在于巧妙地避免了预先计算并存储所有位置的左右最大高度,从而将空间复杂度从 O(N) 优化到 O(1)。

    • 初始化
      • 设置两个指针,left 指向数组的起始位置(索引0),right 指向数组的末尾位置(索引 n-1)。
      • 初始化两个变量 preMax (或称 leftMax) 和 sufMax (或称 rightMax) 为 0,它们将分别用来动态记录从左到右和从右到左遍历过程中的最大高度。
    • 循环与判断逻辑
      • 循环持续进行,只要 left 指针没有越过 right 指针 (left <= right)。
      • 在循环的每一步,首先更新 preMax(为 preMaxheight[left] 中的较大值)和 sufMax(为 sufMaxheight[right] 中的较大值)。
      • 关键判断:比较 preMaxsufMax
        • 如果 preMax < sufMax:这意味着对于 left 指针当前所处的位置,其左侧的最高墙 (preMax) 比右侧的最高墙 (sufMax) 要矮。因为 sufMax 只是 right 指针及其右侧的最高墙,真正的全局右侧最高墙只会大于或等于 sufMax。因此,我们可以确定,决定 left 位置水位的瓶颈是 preMax。此时,left 位置能接的雨水量就是 preMax - height[left]。计算完后,将 left 指针向右移动一位。
        • 如果 preMax >= sufMax:同理,这意味着对于 right 指针当前所处的位置,其右侧的最高墙 (sufMax) 是瓶颈。决定 right 位置水位的瓶颈是 sufMax。此时,right 位置能接的雨水量就是 sufMax - height[right]。计算完后,将 right 指针向左移动一位。
  3. 累加与返回
    在循环的每一步中,将计算出的单个位置的雨水量累加到 ans 中。当循环结束(leftright 指针相遇或交错),ans 即为所求的总雨水量,将其返回。

这种方法通过一次遍历,在移动指针的过程中同时完成了寻找“挡板”和计算雨水两个步骤,非常高效。

完整代码

class Solution {
    public int trap(int[] height) {
        int n = height.length; // 获取数组的长度
        int ans = 0; // 初始化总接水量为0
        // 初始化左右两个指针
        int left = 0;        // left 指针从数组最左边开始
        int right = n - 1;   // right 指针从数组最右边开始
        
        // preMax 用于记录 [0...left] 区间内的最大高度
        int preMax = 0;
        // sufMax 用于记录 [right...n-1] 区间内的最大高度
        int sufMax = 0;
        
        // 当左指针没有超过右指针时,循环继续
        while (left <= right) {
            // 更新 preMax 为当前 preMax 和 left 指针指向高度的较大值
            preMax = Math.max(preMax, height[left]);
            // 更新 sufMax 为当前 sufMax 和 right 指针指向高度的较大值
            sufMax = Math.max(sufMax, height[right]);
            
            // 核心判断:比较左右两侧到目前为止遇到的最大高度
            if (preMax < sufMax) {
                // 如果左侧的最大高度较小,说明决定 left 位置水位的瓶颈是 preMax。
                // 因为我们知道 right 指针右侧的 sufMax 已经比 preMax 大了,
                // 所以 left 位置右侧的真实最高墙必然也大于或等于 preMax。
                // 因此,可以安全地根据 preMax 来计算 left 位置的雨水。
                ans += preMax - height[left];
                // 处理完 left 位置后,将 left 指针向右移动
                left++;
            } else {
                // 如果右侧的最大高度小于或等于左侧的最大高度,说明决定 right 位置水位的瓶颈是 sufMax。
                // 此时,可以安全地根据 sufMax 来计算 right 位置的雨水。
                ans += sufMax - height[right];
                // 处理完 right 位置后,将 right 指针向左移动
                right--;
            }
        }
        
        // 返回累加的总接水量
        return ans;
    }
}

时空复杂度

时间复杂度

  1. 变量初始化操作(n, ans, left, right, preMax, sufMax)都是 O(1) 的。
  2. 代码的核心是一个 while 循环,循环条件是 left <= right
  3. 在每次循环中,left 指针向右移动一位,或者 right 指针向左移动一位。两个指针从数组的两端开始,向中间移动,直到它们相遇或交错。
  4. 每个数组元素最多被 left 指针或 right 指针访问一次。
  5. 因此,整个循环体执行的次数大约是 n 次。
  6. 循环体内部的操作(Math.max、比较、加减法、赋值)都是 O(1) 的。
  7. 所以,总的时间复杂度是 O(N)。

最终时间复杂度: O(N)

空间复杂度

  1. 该算法只使用了有限的几个变量(n, ans, left, right, preMax, sufMax)来存储状态。
  2. 这些变量所占用的空间是固定的,不随输入数组 height 的大小 n 的变化而变化。
  3. 没有使用任何与 n 成正比的额外数据结构(如之前解法中的 preMaxsufMax 数组)。
  4. 因此,额外使用的空间复杂度是 O(1)。

最终空间复杂度: O(1)

参考灵神

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xumistore

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值