Problem: 42. 接雨水
【LeetCode 热题 100】42. 接雨水——(解法一)前后缀分解
【LeetCode 热题 100】42. 接雨水——(解法三)单调栈
整体思路
这段代码采用了双指针法来解决“接雨水”问题,这是一种空间复杂度更优的解法。其核心思想是在一次遍历中,通过动态维护左右两侧的最高墙,来计算每个位置可以接的雨水。
代码的整体思路可以分解为以下步骤:
-
核心问题:
与前一个方法一样,代码旨在计算由数组height
代表的柱子能接住的总雨水量。其基本原理不变:在任何一个位置i
,能接的雨水量取决于其左侧最高墙和右侧最高墙的较小者与当前墙高度的差,即min(left_max, right_max) - height[i]
。 -
双指针算法:
此算法的核心在于巧妙地避免了预先计算并存储所有位置的左右最大高度,从而将空间复杂度从 O(N) 优化到 O(1)。- 初始化:
- 设置两个指针,
left
指向数组的起始位置(索引0),right
指向数组的末尾位置(索引n-1
)。 - 初始化两个变量
preMax
(或称leftMax
) 和sufMax
(或称rightMax
) 为 0,它们将分别用来动态记录从左到右和从右到左遍历过程中的最大高度。
- 设置两个指针,
- 循环与判断逻辑:
- 循环持续进行,只要
left
指针没有越过right
指针 (left <= right
)。 - 在循环的每一步,首先更新
preMax
(为preMax
和height[left]
中的较大值)和sufMax
(为sufMax
和height[right]
中的较大值)。 - 关键判断:比较
preMax
和sufMax
。- 如果
preMax < sufMax
:这意味着对于left
指针当前所处的位置,其左侧的最高墙 (preMax
) 比右侧的最高墙 (sufMax
) 要矮。因为sufMax
只是right
指针及其右侧的最高墙,真正的全局右侧最高墙只会大于或等于sufMax
。因此,我们可以确定,决定left
位置水位的瓶颈是preMax
。此时,left
位置能接的雨水量就是preMax - height[left]
。计算完后,将left
指针向右移动一位。 - 如果
preMax >= sufMax
:同理,这意味着对于right
指针当前所处的位置,其右侧的最高墙 (sufMax
) 是瓶颈。决定right
位置水位的瓶颈是sufMax
。此时,right
位置能接的雨水量就是sufMax - height[right]
。计算完后,将right
指针向左移动一位。
- 如果
- 循环持续进行,只要
- 初始化:
-
累加与返回:
在循环的每一步中,将计算出的单个位置的雨水量累加到ans
中。当循环结束(left
和right
指针相遇或交错),ans
即为所求的总雨水量,将其返回。
这种方法通过一次遍历,在移动指针的过程中同时完成了寻找“挡板”和计算雨水两个步骤,非常高效。
完整代码
class Solution {
public int trap(int[] height) {
int n = height.length; // 获取数组的长度
int ans = 0; // 初始化总接水量为0
// 初始化左右两个指针
int left = 0; // left 指针从数组最左边开始
int right = n - 1; // right 指针从数组最右边开始
// preMax 用于记录 [0...left] 区间内的最大高度
int preMax = 0;
// sufMax 用于记录 [right...n-1] 区间内的最大高度
int sufMax = 0;
// 当左指针没有超过右指针时,循环继续
while (left <= right) {
// 更新 preMax 为当前 preMax 和 left 指针指向高度的较大值
preMax = Math.max(preMax, height[left]);
// 更新 sufMax 为当前 sufMax 和 right 指针指向高度的较大值
sufMax = Math.max(sufMax, height[right]);
// 核心判断:比较左右两侧到目前为止遇到的最大高度
if (preMax < sufMax) {
// 如果左侧的最大高度较小,说明决定 left 位置水位的瓶颈是 preMax。
// 因为我们知道 right 指针右侧的 sufMax 已经比 preMax 大了,
// 所以 left 位置右侧的真实最高墙必然也大于或等于 preMax。
// 因此,可以安全地根据 preMax 来计算 left 位置的雨水。
ans += preMax - height[left];
// 处理完 left 位置后,将 left 指针向右移动
left++;
} else {
// 如果右侧的最大高度小于或等于左侧的最大高度,说明决定 right 位置水位的瓶颈是 sufMax。
// 此时,可以安全地根据 sufMax 来计算 right 位置的雨水。
ans += sufMax - height[right];
// 处理完 right 位置后,将 right 指针向左移动
right--;
}
}
// 返回累加的总接水量
return ans;
}
}
时空复杂度
时间复杂度:
- 变量初始化操作(
n
,ans
,left
,right
,preMax
,sufMax
)都是 O(1) 的。 - 代码的核心是一个
while
循环,循环条件是left <= right
。 - 在每次循环中,
left
指针向右移动一位,或者right
指针向左移动一位。两个指针从数组的两端开始,向中间移动,直到它们相遇或交错。 - 每个数组元素最多被
left
指针或right
指针访问一次。 - 因此,整个循环体执行的次数大约是
n
次。 - 循环体内部的操作(
Math.max
、比较、加减法、赋值)都是 O(1) 的。 - 所以,总的时间复杂度是 O(N)。
最终时间复杂度: O(N)
空间复杂度:
- 该算法只使用了有限的几个变量(
n
,ans
,left
,right
,preMax
,sufMax
)来存储状态。 - 这些变量所占用的空间是固定的,不随输入数组
height
的大小n
的变化而变化。 - 没有使用任何与
n
成正比的额外数据结构(如之前解法中的preMax
和sufMax
数组)。 - 因此,额外使用的空间复杂度是 O(1)。
最终空间复杂度: O(1)
参考灵神