自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小庞的博客

欢迎光临小庞的博客,多多指教

  • 博客(73)
  • 收藏
  • 关注

原创 Apollo源码架构解析---附C++代码设计示例

摘要:百度Apollo自动驾驶平台采用分层模块化架构,包含感知、定位、决策、规划和控制五大核心模块。文章重点解析了感知模块的多传感器数据融合机制,通过C++伪代码示例展示了工厂模式、策略模式等设计模式的应用。规划模块采用场景-阶段-任务三层架构,使用状态机驱动场景切换。Apollo架构具有模块化、可扩展性和实时性特点,建议学习者从ROS基础和C++面向对象编程入手,逐步深入理解模块交互机制。

2025-07-08 11:40:56 319

原创 Apollo自动驾驶系统中Planning模块的架构设计与核心逻辑解析(流程伪代码示例)

Apollo自动驾驶系统的Planning(路径规划)模块是其核心组件之一,负责根据车辆状态、感知数据和地图信息生成安全、合法的行驶路径。本文将从架构设计、核心逻辑、代码示例和实际应用四个方面,深入浅出地解析Planning模块的设计思想与实现方式,帮助初学者快速理解其运行机制。

2025-07-05 15:26:43 1073 1

原创 Apollo自动驾驶系统中Planning(路径规划)模块的架构设计和核心逻辑

Apollo自动驾驶系统的Planning模块采用三层结构(Scenario-Stage-Task)实现路径规划。通过状态机动态切换驾驶场景(如车道保持、路口通行等),每个场景包含多个阶段和具体任务(路径决策、速度优化等)。模块采用.proto配置文件管理逻辑,具有高度模块化和可扩展性。建议新手从理解基本概念、场景切换机制入手,通过修改配置文件和阅读代码逐步掌握该模块。该设计保证了规划过程的实时性和灵活性,是决定车辆行驶路径的核心组件。

2025-07-05 14:58:51 643

原创 机器学习中的数学---常用距离计算方法详解

本文系统介绍了机器学习中10种常用的距离度量方法及其适用场景。欧氏距离适用于低维数据,曼哈顿距离对离群点鲁棒,切比雪夫距离关注最大维度差异。闵可夫斯基距离是前三种的泛化形式,标准化欧氏距离解决了特征尺度问题。马氏距离考虑特征相关性,余弦相似度适合文本分析。汉明距离用于离散数据对比,杰卡德距离衡量集合差异,信息熵反映数据不确定性。选择距离度量需考虑数据类型和算法需求,如K-Means常用欧氏距离,推荐系统偏好余弦相似度。理解不同距离的特点有助于优化模型性能。

2025-07-04 11:08:46 922

原创 《C++MLpack库 聚类算法》实战指南

摘要:本文介绍MLpack库中三种聚类算法实现。K-Means基于距离划分,需预设簇数;DBSCAN基于密度,可识别噪声和任意形状簇;层次聚类构建树状结构,适合分析层次关系。分别提供算法原理、C++代码示例和参数调优方法,并对比各算法特性:K-Means高效但需预设簇数,DBSCAN自动处理噪声但参数敏感,层次聚类保留结构但计算复杂。最后给出算法选择建议,如K-Means适合规则数据,DBSCAN适用于含噪声数据,层次聚类用于需要分析层次关系的场景。

2025-07-03 19:50:37 877

原创 《C++机器学习MLpack库》详解

MLpack是一个高效的C++机器学习库,支持分类、回归、聚类等多种算法,适用于大规模数据处理和嵌入式系统。它提供Python等多语言绑定,兼具高性能与灵活性。学习路径包括安装配置、文档查阅、核心功能实践和社区交流。MLpack在学术研究和工业应用中表现优异,特别适合需要快速原型开发或处理海量数据的场景。其优势在于C++底层优化、多线程支持以及便捷的跨语言协作能力。

2025-07-03 19:31:59 582

原创 《dlib库中的聚类》算法详解:从原理到实践

摘要:dlib库作为C++机器学习和计算机视觉工具,提供高效的聚类算法实现,主要包括K-Means和ChineseWhispers两种方法。K-Means适用于球形数据分布,通过迭代优化进行分组;ChineseWhispers基于图传播,适合非球形数据。dlib聚类算法广泛应用于人脸识别、商户评估和图像分割等场景。开发者需注意数据预处理、参数调优和并行计算等优化技巧,同时应对数据类型匹配、结果不稳定等问题。dlib凭借算法多样性、高性能实现和广泛适用性,为智能分析系统提供强大支持。

2025-07-03 15:48:42 1093

原创 C+++机器学习《dlib库》详解

dlib是一个开源的C++机器学习和计算机视觉工具库,由DavisKing开发维护。它提供跨平台支持,包含丰富的功能模块:机器学习算法(SVM、神经网络等)、计算机视觉技术(人脸检测、特征提取)、数值计算工具和实用工具。dlib以其高性能优化、完善文档和易用性著称,典型应用包括人脸识别、图像分类、目标检测和科学计算。安装简单,支持Linux和Windows平台,提供数百个示例代码。建议学习路径从基础C++语法到机器学习模块,再到实战项目开发。dlib是C++开发者构建智能应用的高效工具,适用于从算法研究到工

2025-07-03 15:44:35 844

原创 《Jaccard距离》算法:集合差异性度量的核心工具

本文系统介绍了Jaccard距离的概念、计算公式及其在文本分析、图像处理和推荐系统等领域的应用。Jaccard距离通过计算集合交集与并集的比值来衡量差异性,其取值范围为0到1。文章详细阐述了计算步骤,并提供了C++实现代码示例,包括字符串分割、集合操作和类型转换等关键环节。同时指出了Jaccard距离的优化方向(如位图压缩)和适用性限制(不适用于连续数据)。该度量方法因其简单高效的特点,成为机器学习领域重要的相似性衡量工具。

2025-07-02 17:00:30 966

原创 《遗传算法》中的几种常见交叉算子详解

摘要:本文系统介绍了遗传算法中常见的交叉算子,包括单点、双点、多点、均匀交叉以及针对排列问题的PMX和OX。通过图示和示例详细说明了每种算子的实现原理、操作步骤及优缺点,其中单点交叉计算效率高但探索能力有限,均匀交叉提升多样性但计算量大,PMX和OX则专为解决排列约束问题。最后提供了交叉算子的选择策略和优化建议,建议根据问题复杂度、约束条件和多样性需求合理选择,并可通过混合使用和动态调整来提升算法性能。文章配有直观的动画演示链接,有助于开发者深入理解交叉机制。

2025-07-01 14:29:08 926

原创 层次聚类算法详解与C++伪代码实现(附实战案例)

摘要: 层次聚类是一种无监督学习方法,通过自底向上(凝聚型)或自顶向下(分裂型)策略构建树状结构(Dendrogram)实现数据分组。本文重点介绍凝聚型层次聚类,其核心步骤包括初始化单样本簇、计算距离矩阵、迭代合并最近簇直至达到目标簇数。关键参数涉及距离度量(如欧氏距离)和簇间距离定义(单链接、全链接、平均链接或Ward方法)。伪代码展示了算法实现流程,并以旅游景点聚类为例,说明如何应用层次聚类分析多特征数据。该算法适合小规模(<1万样本)且需层次化分析的场景,但计算复杂度较高(O(n³)),需注意参

2025-07-01 14:10:18 1037

原创 C++《聚类算法-层次聚类》实现自我参考:医疗样本管分架与动态仪器负载优化

此实现方案已在模拟测试中验证,能有效提升仪器利用率15-20%,减少急诊样本处理时间30%以上。根据实际场景需要,可调整特征权重系数以适应不同实验室条件。我们的策略是:在聚类之前,为所有可选路径的样本管动态选择仪器路径(基于当前负载),然后将路径信息固定到该次聚类的特征中。注意:由于样本管的仪器路径可能根据负载动态改变,因此在聚类前需要先确定当前负载下的路径。

2025-06-30 14:27:15 914

原创 《聚类算法》--进阶版--详解:K-Means、DBSCAN与层次聚类的实现流程与伪代码解析

本文深入探讨三种经典聚类算法的实现原理与应用场景。K-Means通过迭代优化质心位置实现快速分组(O(nk)复杂度),适合规则分布的大规模数据。DBSCAN基于密度扩展发现任意形状簇(O(n²)复杂度),能有效处理噪声但对参数敏感。层次聚类(AGNES)构建树状结构(O(n³)复杂度),适合小规模数据可视化分析。实践建议:预处理数据、合理选择算法(K-Means用于球形簇、DBSCAN处理复杂形状、层次聚类分析小数据),并采用肘部法则、KNN图等方法优化参数。掌握这些算法特性将提升实际聚类问题解决能力。

2025-06-27 16:44:50 1248 2

原创 《聚类算法》入门--大白话篇:像整理房间一样给数据分类

聚类算法是自动将相似数据分组的无监督学习方法,无需预先标注数据。最常见的三种方法是:K-Means适用于规则分布的数据,通过迭代分组;DBSCAN能处理任意形状数据并识别噪声;层次聚类适合小规模数据,可生成树状图。选择方法时需考虑数据形状、噪声及数据量大小。聚类广泛应用于电商、医学、图像处理等领域。建议从K-Means开始尝试,结合可视化工具验证结果,并关注实际业务意义。不同算法各有特点,需根据数据特性选择合适方法。

2025-06-27 16:19:20 290

原创 C++哈希表:从零到精通,掌握高效数据存储与检索的利器

本文全面介绍了C++中的哈希表核心知识,重点分析了unordered_map和unordered_set的实现原理与使用方法。内容涵盖哈希函数设计、冲突解决策略(链地址法、开放寻址法)、性能优化技巧(负载因子调整、扩容机制)等关键技术点,并针对算法面试常见问题(如两数之和、LRU缓存)提供代码示例。文章还总结了哈希表在实际应用中的多种场景(数据库索引、缓存系统等),最后给出了循序渐进的学习路线和常见误区避坑指南,帮助读者从理论到实践全面掌握哈希表这一重要数据结构。

2025-06-26 17:35:50 683

原创 C++链表详解:从零开始掌握链表结构,轻松应对算法面试

本文系统介绍了链表这一基础数据结构,重点分析了C++中链表的实现与应用。内容涵盖:1)链表与数组的核心对比;2)单向、双向和循环链表的实现方式;3)链表的基本操作(插入、删除、反转等)及时间复杂度分析;4)常见错误与优化技巧;5)面试高频考点和实际应用场景(如LRU缓存)。文章强调指针操作顺序、内存管理和边界条件等关键点,并提供了学习路线和推荐资源。链表作为算法面试的核心考点,需要结合实践才能真正掌握。

2025-06-26 17:21:41 1471

原创 数组总结(C++版):从底层原理到实战技巧的终极总结

摘要: 数组是C++编程中的核心数据结构,因其连续内存布局而具有O(1)随机访问特性。本文剖析了数组的底层原理与实战技巧,包括内存布局、操作复杂度分析、声明初始化陷阱、遍历排序方法、多维数组处理等核心内容。重点指出了数组越界、内存泄漏等常见问题及解决方案,并展示了滑动窗口算法等高级应用。建议在需要高效随机访问时使用数组,动态扩容场景则选择std::vector。掌握数组的底层逻辑和STL容器特性,能显著提升C++编程效率和代码质量。

2025-06-25 19:46:23 707

原创 用 Boost 库解析 .ini 和 .json 文件时的“坑”:注释导致的解析错误与解决方案

摘要:使用Boost库解析配置文件时需注意其严格的注释处理规则。对于.ini文件,Boost要求注释必须独占一行,key值后的行内注释会导致解析失败;对于.json文件,Boost完全遵循JSON标准不支持任何注释。这与许多其他解析库的宽松处理形成差异。建议解决方案包括:1)解析前预处理去除注释;2)改用支持注释的替代库(libini/nlohmann/json);3)严格规范配置文件格式。Boost的严格性体现了对标准的尊重,开发者需根据项目需求选择合适方案。

2025-06-25 14:24:06 606

原创 从零到一:C语言基础入门学习路线与核心知识点全解析

学习C语言是一场从底层逻辑到高级抽象的探索之旅。通过系统化的学习路线和持续的实践,你不仅能掌握一门编程语言,还能建立起对计算机科学的深刻理解。记住,编程的核心是解决问题,而C语言为你打开了一扇通向底层世界的大门。现在,拿起键盘,开始你的编程冒险吧!

2025-06-17 20:28:05 730 2

原创 《SQL基础教程》第二版 全书总结 超级详细!!!:小白也能掌握的数据库入门指南

《SQL基础教程》摘要:SQL是数据分析必备技能,本书用通俗语言和案例教你从零掌握数据库操作。核心内容包括:数据库基本概念(表、主外键关系)、SQL三大功能(DDL建表、DML数据操作、DCL权限管理)、进阶技巧(聚合函数、窗口函数、多表查询)及实战应用。特别强调索引优化、事务安全等实用技巧,通过报表生成等案例演示SQL价值。适合想快速上手数据分析的新手,只要掌握基础语法并多加练习,就能成为团队"数据达人"。

2025-06-14 16:55:41 909

原创 《SQL基础教程》第二版 第八章:窗口函数 & 小计合计神器 GROUPING SQL小白也能懂!

《SQL基础教程》第八章精华:小白也能掌握的数据分析神器!第八章带你解锁SQL高级技巧——窗口函数和GROUPING运算符,告别手动计算,轻松玩转报表分析!窗口函数让你在保留原始数据的同时,实现部门薪资排名、累计销售额等复杂计算,像Excel一样灵活处理数据。GROUPING运算符(ROLLUP/CUBE)自动生成小计与合计,一语句搞定多维度统计,省去繁琐的UNION操作。无需编程基础,小白也能通过简单语法快速生成动态报表、多维分析结果。学会这两大工具,你的SQL技能直接升级,轻松应对业务统计、

2025-06-11 17:38:27 924

原创 《SQL基础教程》第二版 第七章:4招掌握表连接、子查询、集合操作与关系除法,数据整合效率翻倍!

你是否遇到过这样的困境?明明有三个表格,却总找不到正确的关联方式?或者面对复杂的业务需求,不知道如何用SQL合并多个数据源?《SQL基础教程》第二版第七章为你提供了四大“数据整合神器”——表连接、子查询、集合操作与关系除法。今天,我用最接地气的语言,教你如何用这四招轻松应对复杂数据挑战,让你的SQL技能直接跃升一个台阶!    第七章的表连接、子查询、集合操作与关系除法,不仅是SQL的“进阶技能包”,更是处理复杂业务问题的思维方式。通过连接数据源、嵌套逻辑判断、合并多结果、解决“所有...”类问题,你可以轻

2025-06-11 15:27:16 580

原创 《SQL基础教程》 第二版 第六章:轻松掌握函数、谓词与CASE表达式,数据处理不再难!

你是否在SQL学习中遇到过这样的困惑?明明数据就在表里,却总是筛选不出想要的结果?或者面对复杂的业务逻辑,不知道如何用SQL实现分类处理?《SQL基础教程》第二版第六章为你提供了强大的工具!今天,我将用最通俗的语言,带你轻松掌握三大核心技能——函数、谓词和CASE表达式,让你的SQL技能直接升级!结语:SQL不止是查询,更是思维工具第六章的内容不仅是SQL的核心技能,更是数据思维的体现。通过函数处理数据、谓词筛选数据、CASE表达式分类数据,你将拥有“用数据讲故事”的能力。记住,SQL的学习不是死记硬背,

2025-06-10 11:23:57 617

原创 《SQL基础教程》第五章 SQL进阶之路:掌握高级查询的核心技巧

SQL高级查询核心技巧: 1️⃣ 子查询:解决动态参照问题(如筛选高于部门平均薪资的员工),注意关联条件和性能优化 2️⃣ 多表连接: INNER JOIN查交集(订单关联用户) LEFT JOIN保左表全量(统计所有用户订单) 需严格避免笛卡尔积 3️⃣ 数据处理函数:字符串拼接、日期计算、NULL值处理等 4️⃣ 进阶技巧: DISTINCT去重 UNION合并结果集 窗口函数实现分组排名 CASE WHEN行转列 ⚠️ 优化建议:JOIN字段建索引、限制子查询嵌套层数、始终明确连接条件

2025-06-06 14:34:01 516

原创 《SQL基础教程》第四章:数据更新(INSERT/DELETE/UPDATE)入门指南

SQL数据更新操作指南 摘要:SQL的数据更新操作是数据库管理的核心技能,主要包括INSERT、UPDATE和DELETE三大语句。INSERT用于添加新数据,可单行或多行插入;UPDATE修改现有数据,支持条件更新和多字段修改;DELETE删除数据,需谨慎使用WHERE条件。事务机制(ACID原则)确保了数据操作的原子性和一致性。关键注意事项包括:必须使用WHERE子句、操作前备份数据、测试环境验证SQL语句以及合理使用事务控制。掌握这些操作能让数据库管理更加高效安全。(149字)

2025-06-05 11:50:15 272

原创 SQL基础教程(第2版)第三章:聚合与排序——初学者的入门指南

在学习SQL的过程中,聚合与排序是数据分析师和开发人员必须掌握的核心技能之一。《SQL基础教程(第2版)》的第三章详细讲解了如何通过SQL对数据进行汇总、分组和排序操作。本文将用通俗易懂的语言,结合实际案例,帮助初学者快速理解这一章的核心内容。通过第三章的学习,你应该已经掌握了SQL中最基础但最重要的聚合与排序技巧。这些技能不仅能帮助你快速分析数据,还能为后续学习复杂查询(如子查询、窗口函数)打下坚实基础。记住:多练习、多尝试,是掌握SQL的唯一捷径!

2025-05-30 10:14:20 925

原创 SQL基础教程:第一章与第二章内容总结(新手入门指南)

本文介绍了SQL的基础知识,涵盖数据库概念和SQL基本操作。第一部分阐述了数据库的定义、类型及SQL的作用与分类(DDL、DML、DCL、TCL),并讲解了表的创建与管理。第二部分重点介绍了SQL语法基础、数据检索(SELECT语句)、数据聚合与分组(GROUP BY)以及增删改操作(INSERT/UPDATE/DELETE)。文章建议初学者通过安装数据库系统、创建示例数据库和在线工具进行实践练习,强调动手操作对掌握SQL的重要性,为后续学习更复杂的查询技巧打下基础。

2025-05-27 14:27:17 802

原创 遗传算法简明指南:思路解析与C++实现

本文介绍了遗传算法的核心原理与实现方法。该算法通过模拟生物进化过程(选择、交叉、变异)在复杂空间中搜索最优解。文章使用C++伪代码详细说明了关键步骤:种群初始化、适应度评估、锦标赛选择、基因重组、变异操作及精英保留策略,并提供了完整的算法框架。遗传算法适用于组合优化、参数调优、路径规划等问题,其性能受种群大小、变异率等参数影响。开发者需根据具体问题设计适应度函数和基因编码方式,通过调整参数可获得更好的优化效果。

2025-05-27 14:18:58 358

原创 调度算法中的轮盘赌与锦标赛选择算子:优势对比与选择策略

本文比较了进化算法中两种经典选择算子轮盘赌和锦标赛的优缺点。轮盘赌通过概率比例选择个体,简单易实现但容易过早收敛;锦标赛通过k值竞赛选择,能更好维持多样性但对参数敏感。轮盘赌适合适应度均匀、需快速收敛的场景,而锦标赛适用于适应度差异大、需平衡优化的场景。开发者可根据问题特性灵活选择或混合使用这两种方法,通过调整参数控制算法的探索与开发能力。文章提供了C++伪代码实现,并建议在初期使用轮盘赌加速收敛,后期切换到锦标赛维持多样性。

2025-05-26 18:00:11 467

原创 基于多目标优化的样本调度适应度函数设计

本文提出了一种结合时间窗口约束和急诊优先策略的适应度函数设计,并探讨其在遗传算法中的应用价值。该设计通过双维度评估模型,将时间窗口约束和急诊优先级转化为可量化的评估指标,其中时间窗口评估占40%权重,急诊优先级评估占60%权重。急诊优先级评估包括位置偏移惩罚和聚集度评估,使用S型函数避免传统阈值法的缺陷。该算法通过权重分配实现多目标协同优化,柔性评估机制和进化引导特性,显著提升了调度效率。仿真实验显示,该算法在不同场景下均优于传统方法,效率提升显著。在遗传算法框架中,该适应度函数有效指导进化方向,通过选择、

2025-05-22 21:02:12 772

原创 一文搞懂 C++ 中 std::set、std::unordered_set、std::map 和 std::unordered_map 的用法与选择策略

在C++编程中,std::set、std::unordered_set、std::map和std::unordered_map是常用的关联容器,用于存储唯一键值。std::set和std::map基于红黑树实现,元素自动排序,适合需要有序存储和范围查询的场景,时间复杂度为O(log n)。std::unordered_set和std::unordered_map基于哈希表实现,元素无序存储,适合需要快速查找、插入和删除的场景,平均时间复杂度为O(1),最坏情况下为O(n)。选择容器时需考虑是否需要排序、范围

2025-05-20 15:44:35 953

原创 Visual Studio 编译错误 LNK2038:MTD 和 MDD 的区别及解决方法

LNK2038错误通常是由于运行时库配置不匹配引起的。通过检查项目设置,统一运行时库配置,修改第三方库的配置,使用预处理器指令等方法,可以有效解决这个问题。希望本文能够帮助你更好地理解和解决LNK2038错误,提高项目的编译和运行效率。

2025-03-04 14:48:22 1110

原创 Google or-tools库 CMake 编译命令

DCMAKE_CXX_FLAGS="/utf-8" //强制使用 UTF-8 编码。-DCMAKE_INSTALL_PREFIX=install //带安装命令。# 设置 HTTP/HTTPS 代理(替换为你的代理地址和端口)-DBUILD_DEPS=ON //联网下载。//查看git clone是否能用。

2025-02-27 20:19:20 339

原创 ​手把手教程:在 VS2017 32位 Windows 环境下编译 OR-Tools 9.6 并集成到 C++ 项目

通过本文的两种方法,你可以根据需求选择快速集成或深度定制 OR-Tools。

2025-02-27 14:43:10 1211

原创 线程池中的设计细节:并发执行与锁的优化

线程池是一种管理线程资源的机制,它预先创建一组线程,这些线程可以被重复使用来执行多个任务。减少线程创建和销毁的开销:线程的创建和销毁需要消耗系统资源,线程池可以避免频繁的线程创建和销毁。控制并发线程的数量:线程池可以限制同时运行的线程数量,避免过多的线程竞争资源导致性能下降。提高系统的响应速度:线程池中的线程可以快速响应任务请求,提高系统的整体性能。线程池是并发编程中的一种重要工具,通过合理的设计和优化,可以充分利用 CPU 资源,提高系统的性能和稳定性。

2025-02-25 11:33:27 431

原创 服务器缓存区的过期删除策略:原理与实现

缓存区是服务器架构中不可或缺的一部分,但管理不当可能会导致性能问题。通过设置合理的过期删除规则,可以确保缓存区中的数据始终是最新的,同时避免内存占用过多。本文介绍了几种常见的缓存过期删除策略(TTL、LRU、LFU),并提供了相应的实现方法和示例代码。希望读者能够通过本文掌握缓存区管理的关键思路,并在实际应用中加以运用。

2025-02-25 11:28:15 1068

原创 C++项目集成OR-Tools库使用方法

如果你希望将OR-Tools的库和头文件整合到你的源项目中以便在本地运行和调试,可以按照以下步骤进行操作:(假设你已经下载了OR-Tools的二进制文件并解压到某个目录,例如。

2025-02-14 09:45:50 931

原创 Google的OR-Tools:运筹学与优化的强大工具

OR-Tools(Operations Research Tools)是Google开源的一个用于组合优化的软件套件,旨在帮助开发者解决各种复杂的调度、路由、分配和资源管理问题。它集合了多种算法,包括线性规划、整数规划、网络流模型、图算法等,为处理组合优化问题提供了一站式的解决方案。OR-Tools支持多种编程语言,如C++、Python、Java和.NET,让开发人员可以根据项目需求选择最适合的语言。

2025-02-14 09:43:51 1751

原创 轻松上手 C++ 的 RapidJSON 解析库:从零开始的教程

RapidJSON 是一个高性能、轻量级的 JSON 解析库,专为 C++ 设计。高性能:RapidJSON 的解析速度非常快,几乎可以与strlen()函数的速度相媲美。易用性:RapidJSON 提供了简洁的 API,使得解析和生成 JSON 数据变得非常简单。灵活性:支持多种数据类型,包括对象、数组、字符串、数字、布尔值和 NULL。跨平台:支持 Windows、Linux、macOS 等多种操作系统。在访问 JSON 数据之前,最好先检查成员是否存在,以避免程序崩溃。可以使用HasMember。

2025-02-08 17:58:10 1329

原创 C++ 中的 cJSON 解析库:用法、实现及递归解析算法与内存高效管理

cJSON 是一个轻量级的 JSON 解析库,支持 C 和 C++ 语言。它提供了简单易用的 API,可以方便地解析 JSON 数据和生成 JSON 字符串。轻量级:cJSON 的代码量较小,适合嵌入式系统和资源受限的环境。高性能:cJSON 使用高效的解析算法,能够快速解析和生成 JSON 数据。易用性:cJSON 提供了简洁的 API,开发者可以轻松上手。灵活性:cJSON 支持多种数据类型,包括对象、数组、字符串、数字、布尔值和 NULL。

2025-02-08 17:50:19 892

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除