机器学习 从入门到精通 day_02

1. 特征工程

1.1 特征工程概念

        特征工程:就是对特征进行相关的处理,一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程。
        特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。
        特征工程步骤为:

  • 特征提取, 如果不是像dataframe那样的数据,要进行特征提取,比如字典特征提取,文本特征提取

  • 无量纲化(预处理)

    • 归一化

    • 标准化

  • 降维

    • 底方差过滤特征选择

    • 主成分分析-PCA降维

1.2 特征工程API

        实例化转换器对象,转换器类有很多,都是Transformer的子类, 常用的子类有:

DictVectorizer      字典特征提取
CountVectorizer     文本特征提取
TfidfVectorizer     TF-IDF文本特征词的重要程度特征提取 
MinMaxScaler        归一化
StandardScaler      标准化
VarianceThreshold   底方差过滤降维
PCA                 主成分分析降维

            转换器对象调用fit_transform()进行转换, 其中fit用于计算数据,transform进行最终转换。fit_transform()可以使用fit()和transform()代替。

    data_new = transfer.fit_transform(data)
    可写成
    transfer.fit(data)
    data_new = transfer.transform(data)

    1.3 DictVectorizer  字典列表特征提取

            稀疏矩阵:稀疏矩阵是指一个矩阵中大部分元素为零,只有少数元素是非零的矩阵。在数学和计算机科学中,当一个矩阵的非零元素数量远小于总的元素数量,且非零元素分布没有明显的规律时,这样的矩阵就被认为是稀疏矩阵。例如,在一个1000 x 1000的矩阵中,如果只有1000个非零元素,那么这个矩阵就是稀疏的。
            由于稀疏矩阵中零元素非常多,存储和处理稀疏矩阵时,通常会采用特殊的存储格式,以节省内存空间并提高计算效率。
            三元组表 (Coordinate List, COO):三元组表就是一种稀疏矩阵类型数据,存储非零元素的行索引、列索引和值:

            (行,列) 数据

                    (0,0) 10

                    (0,1) 20

                    (2,0) 90

            表示除了列出的有值, 其余全是0

            非稀疏矩阵(稠密矩阵):非稀疏矩阵,或称稠密矩阵,是指矩阵中非零元素的数量与总元素数量相比接近或相等,也就是说矩阵中的大部分元素都是非零的。在这种情况下,矩阵的存储通常采用标准的二维数组形式,因为非零元素密集分布,不需要特殊的压缩或优化存储策略。

    • 存储:稀疏矩阵使用特定的存储格式来节省空间,而稠密矩阵使用常规的数组存储所有元素,无论其是否为零。

    • 计算:稀疏矩阵在进行计算时可以利用零元素的特性跳过不必要的计算,从而提高效率。而稠密矩阵在计算时需要处理所有元素,包括零元素。

    • 应用领域:稀疏矩阵常见于大规模数据分析、图形学、自然语言处理、机器学习等领域,而稠密矩阵在数学计算、线性代数等通用计算领域更为常见。

            在实际应用中,选择使用稀疏矩阵还是稠密矩阵取决于具体的问题场景和数据特性。

    API介绍:

            创建转换器对象:sklearn.feature_extraction.DictVectorizer(sparse=True)
            参数:
                    sparse=True返回类型为csr_matrix的稀疏矩阵;
                    sparse=False表示返回的是数组,数组可以调用.toarray()方法将稀疏矩阵转换为数组;

            转换器对象:转换器对象调用fit_transform(data)函数,参数data为一维字典数组或一维字典列表,返回转化后的矩阵或数组,转换器对象get_feature_names_out()方法获取特征名

            示例1:提取为稀疏矩阵对应的数组

    from sklearn.feature_extraction import DictVectorizer
    data = [{'city':'成都', 'age':30, 'temperature':200}, {'city':'重庆','age':33, 'temperature':60}, {'city':'北京', 'age':42, 'temperature':80}]
    #创建DictVectorizer对象
    transfer = DictVectorizer(sparse=False)
    data_new = transfer.fit_transform(data)
    # data_new的类型为ndarray
    #特征数据
    print("data_new:\n", data_new)
    #特征名字 
    print("特征名字:\n", transfer.get_feature_names_out())

            示例2:提取为稀疏矩阵

    from sklearn.feature_extraction import DictVectorizer
    data = [{'city':'成都', 'age':30, 'temperature':200}, {'city':'重庆','age':33, 'temperature':60}, {'city':'北京', 'age':42, 'temperature':80}]
    #创建DictVectorizer对象
    transfer = DictVectorizer(sparse=True)
    data_new = transfer.fit_transform(data)
    #data_new的类型为<class 'scipy.sparse._csr.csr_matrix'>
    print("data_new:\n", data_new)
    #得到特征 
    print("特征名字:\n", transfer.get_feature_names_out())

    1.4 CountVectorizer 文本特征提取

    API介绍:
            sklearn.feature_extraction.text.CountVectorizer
    :构造函数关键字参数stop_words,值为list,表示词的黑名单(不提取的词)。
            fit_transform函数的返回值为稀疏矩阵。

            示例:英文文本提取

    from sklearn.feature_extraction.text import CountVectorizer
    import pandas as pd
    
    data=["stu is well, stu is great", "You like stu"]
    #创建转换器对象, you和is不提取
    transfer = CountVectorizer(stop_words=["you","is"])
    #进行提取,得到稀疏矩阵
    data_new = transfer.fit_transform(data)
    print(data_new)
    
    import pandas
    pandas.DataFrame(data_new.toarray(), 
                     index=["第一个句子","第二个句子"],
                     columns=transfer.get_feature_names_out())

            示例2:中文文本提取

    import jieba
    from sklearn.feature_extraction.text import CountVectorizer
    
    def cut(text):
        return " ".join(list(jieba.cut(text)))
    
    data = ["教育学会会长期间坚定支持民办教育事业!","热忱关心、扶持民办学校发展","事业做出重大贡献!"]
    data_new = [cut(v) for v in data]
    
    transfer = CountVectorizer(stop_words=['期间', '做出']) 
    data_final = transfer.fit_transform(data_new)
    
    print(data_final.toarray())#把非稀疏矩阵转变为稀疏矩阵
    print(transfer.get_feature_names_out())#
    
    import pandas as pd
    pd.DataFrame(data_final.toarray(), columns=transfer.get_feature_names_out())

    1.5 TfidfVectorizer TF-IDF文本特征词的重要程度特征提取 

    算法:

            1. 计算逆文档频率(Inverse Document Frequency, IDF),IDF 衡量词的全局重要性,公式:为:

    • NN:总文档数

    • ntnt​:包含词 tt 的文档数

    • 平滑处理:默认 smooth_idf=True 避免除零(对 ntnt​ 和 NN 加 1)。

    • 若 use_idf=False,则跳过 IDF 计算(退化为纯词频)。

            2. 计算 TF-IDF 值:将 TF 与 IDF 相乘,得到每个词的 TF-IDF 权重:

    API介绍:

            sklearn.feature_extraction.text.TfidfVectorizer():构造函数关键字参数stop_words,表示词特征黑名单。
            fit_transform 函数的返回值为稀疏矩阵。

            示例1:

    import jieba
    import pandas as pd
    from sklearn.feature_extraction.text import TfidfVectorizer
    
    def cut_words(text):
        return " ".join(list(jieba.cut(text)))
    
    data = ["教育学会会长期间,坚定支持民办教育事业!",  "扶持民办,学校发展事业","事业做出重大贡献!"]
    data_new = [cut_words(v) for v in data]
    
    transfer = TfidfVectorizer(stop_words=['期间', '做出',"重大贡献"]) 
    data_final = transfer.fit_transform(data_new)
    
    pd.DataFrame(data_final.toarray(), columns=transfer.get_feature_names_out())

            示例2:

    from sklearn.feature_extraction.text import CountVectorizer
    
    transfer = CountVectorizer(stop_words=['期间', '做出',"重大贡献"]) 
    data_final = transfer.fit_transform(data_new)
    
    pd.DataFrame(data_final.toarray(), columns=transfer.get_feature_names_out())

    补充:在sklearn库中 TF-IDF算法做了一些细节的优化。

    词频 (TF):词频是指一个词在文档中出现的频率。通常有两种计算方法:
            1. 原始词频:一个词在文档中出现的次数除以文档中总的词数。
            2. 平滑后的词频:为了防止高频词主导向量空间,有时会对词频进行平滑处理,例如使用 1 + log(TF)
            3. 在 TfidfVectorizer 中,TF 默认是:直接使用一个词在文档中出现的次数也就是CountVectorizer的结果

    逆文档频率 (IDF):逆文档频率衡量一个词的普遍重要性。如果一个词在许多文档中都出现,那么它的重要性就会降低。
            IDF 的计算公式是:

            在 TfidfVectorizer 中,IDF 的默认计算公式是:

            在 TfidfVectorizer 中还会进行归一化处理(采用的L2归一化),L2归一化公式:

            示例:

    from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
    from sklearn.preprocessing import normalize
    from sklearn.preprocessing import StandardScaler
    import jieba
    import pandas as pd
    import numpy as np
    def my_cut(text):
        return " ".join(jieba.cut(text))
    data=["教育学会会长期间,坚定支持民办教育事业!",  "扶持民办,学校发展事业","事业做出重大贡献!"]
    data=[my_cut(i) for i in data]
    print(data)
    # print("词频",CountVectorizer().fit_transform(data).toarray())
    transfer=TfidfVectorizer()
    res=transfer.fit_transform(data)
    print(pd.DataFrame(res.toarray(),columns=transfer.get_feature_names_out()))
    
    # 手动实现tfidf向量(跟上面的api实现出一样的效果)
    def tfidf(data):
        # 计算词频
        count = CountVectorizer().fit_transform(data).toarray()
        print("count",count)
        print(np.sum(count != 0, axis=0))
        # 计算IDF,并采用平滑处理
        idf = np.log((len(data) + 1) / (1 + np.sum(count != 0, axis=0))) + 1
        
        # 计算TF-IDF
        tf_idf = count * idf
        
        # L2标准化
        tf_idf_normalized = normalize(tf_idf, norm='l2', axis=1)#axis=0是列  axis=1是行
        
        return tf_idf,tf_idf_normalized
    tf_idf,tf_idf_normalized=tfidf(data)
    print(pd.DataFrame(tf_idf,columns=transfer.get_feature_names_out()))
    print(pd.DataFrame(tf_idf_normalized,columns=transfer.get_feature_names_out()))

    1.6 无量纲化-预处理

            无量纲即没有单位的数据,无量纲化包括"归一化"和"标准化", 为什么要进行无量纲化呢?
    这是一个男士的数据表:

    编号id身高 h收入 s体重 w
    11.75(米)15000(元)120(斤)
    21.5(米)16000(元)140(斤)
    31.6(米)20000(元)100(斤)

    假设算法中需要求它们之间的欧式距离, 这里以编号1和编号2为示例:

            从计算上来看, 发现身高对计算结果没有什么影响, 基本主要由收入来决定了,但是现实生活中,身高是比较重要的判断标准. 所以需要无量纲化。

    1.6.1 MinMaxScaler 归一化

            通过对原始数据进行变换把数据映射到指定区间(默认为0-1),归一化公式:

            这里的 𝑥min 和 𝑥max 分别是每种特征中的最小值和最大值,而 𝑥是当前特征值,𝑥scaled 是归一化后的特征值。若要缩放到其他区间,可以使用公式:

            范围[-1, 1]的公式为:

    API介绍:

            sklearn.preprocessing.MinMaxScaler(feature_range),参数:feature_range=(0,1) 归一化后的值域,可以自己设定。
            fit_transform函数归一化的原始数据类型可以是list、DataFrame和ndarray, 不可以是稀疏矩阵,fit_transform函数的返回值为ndarray。

            示例1:原始数据类型为list

    from sklearn.preprocessing import MinMaxScaler
    data=[[12,22,4],[22,23,1],[11,23,9]]
    #feature_range=(0, 1)表示归一化后的值域,可以自己设定
    transfer = MinMaxScaler(feature_range=(0, 1))
    #data_new的类型为<class 'numpy.ndarray'>
    data_new = transfer.fit_transform(data)
    print(data_new)

            示例2:原始数据类型为DataFrame

    from sklearn.preprocessing import MinMaxScaler
    import pandas as pd;
    data=[[12,22,4],[22,23,1],[11,23,9]]
    data = pd.DataFrame(data=data, index=["一","二","三"], columns=["一列","二列","三列"])
    transfer = MinMaxScaler(feature_range=(0, 1))
    data_new = transfer.fit_transform(data)
    print(data_new)

            示例3:原始数据类型为 ndarray

    from sklearn.feature_extraction import DictVectorizer
    from sklearn.preprocessing import MinMaxScaler
    
    data = [{'city':'成都', 'age':30, 'temperature':200}, {'city':'重庆','age':33, 'temperature':60}, {'city':'北京', 'age':42, 'temperature':80}]
    transfer = DictVectorizer(sparse=False)
    data = transfer.fit_transform(data) #data类型为ndarray
    print(data)
    
    transfer = MinMaxScaler(feature_range=(0, 1))
    data = transfer.fit_transform(data)
    print(data)

            注意:最大值和最小值容易受到异常点影响,所以**鲁棒性**较差。所以常使用标准化的无量钢化。

    1.6.2 normalize 归一化

    API介绍:

    from sklearn.preprocessing import normalize
    normalize(data, norm='l2', axis=1)
    # data是要归一化的数据
    # norm是使用那种归一化:"l1"  "l2"  "max
    # axis=0是列  axis=1是行

            1. L1归一化:绝对值相加作为分母,特征值作为分子。
            2. L2归一化:平方相加和的平方根作为分母,特征值作为分子。
            3. max归一化:max作为分母,特征值作为分子。

    1.6.3 StandardScaler 标准化

            在机器学习中,标准化是一种数据预处理技术,也称为数据归一化或特征缩放。它的目的是将不同特征的数值范围缩放到统一的标准范围,以便更好地适应一些机器学习算法,特别是那些对输入数据的尺度敏感的算法。
    1. 标准化公式

            最常见的标准化方法是Z-score标准化,也称为零均值标准化。它通过对每个特征的值减去其均值,再除以其标准差,将数据转换为均值为0,标准差为1的分布。这可以通过以下公式计算:

            其中,z是转换后的数值,x是原始数据的值,μ是该特征的均值,σ是该特征的 标准差。

    2. API介绍:

            sklearn.preprocessing.StandardScale MinMaxScaler 一样,原始数据类型可以是list、DataFrame和ndarray。
            fit_transform 函数的返回值为ndarray,   归一化后得到的数据类型都是ndarray。

            示例:

    from sklearn.preprocessing import StandardScaler
    #不能加参数feature_range=(0, 1)
    transfer = StandardScaler()
    data_new = transfer.fit_transform(data) #data_new的类型为ndarray

    3. 标准化示例1:

    import pandas as pd
    import numpy as np
    from sklearn.preprocessing import StandardScaler
    # 1、获取数据
    df_data = pd.read_csv("src/dating.txt")
    print(type(df_data)) #<class 'pandas.core.frame.DataFrame'>
    print(df_data.shape) #(1000, 4)
    
    # 2、实例化一个转换器类
    transfer = StandardScaler()
    
    # 3、调用fit_transform
    new_data = transfer.fit_transform(df_data) #把DateFrame数据进行归一化
    print("DateFrame数据被归一化后:\n", new_data[0:5])
    
    nd_data = df_data.values #把DateFrame转为ndarray
    new_data = transfer.fit_transform(nd_data) #把ndarray数据进行归一化
    print("ndarray数据被归一化后:\n", new_data[0:5])
    
    nd_data = df_data.values.tolist() #把DateFrame转为list
    new_data = transfer.fit_transform(nd_data) #把ndarray数据进行归一化
    print("list数据被归一化后:\n", new_data[0:5])

            标准化示例2:

    #数据
    data=np.array([[5],
                   [20],
                   [40],
                   [80],
                   [100]])
    #API实现标准化
    data_news=scaler.fit_transform(data)
    print("API实现:\n",data_news)
    
    #标准化自己实现
    mu=np.mean(data)
    sum=0
    for i in data:
            sum+=((i[0]-mu)**2)
    d=np.sqrt(sum/(len(data)))
    print("自己实现:\n",(data[3]-mu)/d)

    4. 注意

            在数据预处理中,特别是使用如StandardScaler这样的数据转换器时,fitfit_transformtransform这三个方法的使用是至关重要的,它们各自有不同的作用:

    1. fit:

      • 这个方法用来计算数据的统计信息,比如均值和标准差(在StandardScaler的情况下)。这些统计信息随后会被用于数据的标准化。

      • 你应当仅在训练集上使用fit方法。

    2. fit_transform:

      • 这个方法相当于先调用fit再调用transform,但是它在内部执行得更高效。

      • 它同样应当仅在训练集上使用,它会计算训练集的统计信息并立即应用到该训练集上。

    3. transform:

      • 这个方法使用已经通过fit方法计算出的统计信息来转换数据。

      • 它可以应用于任何数据集,包括训练集、验证集或测试集,但是应用时使用的统计信息必须来自于训练集。

            当你在预处理数据时,首先需要在训练集X_train上使用fit_transform,这样做可以一次性完成统计信息的计算和数据的标准化。这是因为我们需要确保模型是基于训练数据的统计信息进行学习的,而不是整个数据集的统计信息。
            一旦scaler对象在X_train上被fit,它就已经知道了如何将数据标准化。这时,对于测试集X_test,我们只需要使用transform方法,因为我们不希望在测试集上重新计算任何统计信息,也不希望测试集的信息影响到训练过程。如果我们对X_test也使用fit_transform,测试集的信息就可能会影响到训练过程。
            总结来说:我们常常是先fit_transform(x_train)然后再transform(x_text)。

    1.7 特征降维

            实际数据中,有时候特征很多,会增加计算量,降维就是去掉一些特征,或者转化多个特征为少量个特征。
            特征降维其目的:是减少数据集的维度,同时尽可能保留数据的重要信息。
            特征降维的好处:减少计算成本:在高维空间中处理数据可能非常耗时且计算密集。降维可以简化模型,降低训练时间和资源需求。去除噪声:高维数据可能包含许多无关或冗余特征,这些特征可能引入噪声并导致过拟合。降维可以帮助去除这些不必要的特征。

    特征降维的方式:

    • 特征选择

      • 从原始特征集中挑选出最相关的特征

    • 主成份分析(PCA)

      • 主成分分析就是把之前的特征通过一系列数学计算,形成新的特征,新的特征数量会小于之前特征数量

    1.7.1 特征选择

    1. VarianceThreshold 低方差过滤特征选择

    • Filter(过滤式): 主要探究特征本身特点, 特征与特征、特征与目标 值之间关联

      • 方差选择法: 低方差特征过滤

        如果一个特征的方差很小,说明这个特征的值在样本中几乎相同或变化不大,包含的信息量很少,模型很难通过该特征区分不同的对象,比如区分甜瓜子和咸瓜子还是蒜香瓜子,如果有一个特征是长度,这个特征相差不大可以去掉。

        1. 计算方差:对于每个特征,计算其在训练集中的方差(每个样本值与均值之差的平方,在求平均)。

        2. 设定阈值:选择一个方差阈值,任何低于这个阈值的特征都将被视为低方差特征。

        3. 过滤特征:移除所有方差低于设定阈值的特征

    创建对象,准备把方差为等于小于2的去掉,threshold的缺省值为2.0
    sklearn.feature_selection.VarianceThreshold(threshold=2.0)
    
    把x中低方差特征去掉, x的类型可以是DataFrame、ndarray和list
    VananceThreshold.fit_transform(x)
    fit_transform函数的返回值为ndarray

            示例:

    from sklearn.feature_selection import VarianceThreshold
    import pandas as pd
    def variance_demo():
        # 1、获取数据,data是一个DataFrame,可以是读取的csv文件
        data=pd.DataFrame([[10,1],[11,3],[11,1],[11,5],[11,9],[11,3],[11,2],[11,6]])
        print("data:\n", data)   
        # 2、实例化一个转换器类
        transfer = VarianceThreshold(threshold=1)#0.1阈值
        # 3、调用fit_transform
        data_new = transfer.fit_transform(data)
        print("data_new:\n",data_new)
        return None
    variance_demo()

    2. 根据相关系数的特征选择

            理论:正相关性(Positive Correlation)是指两个变量之间的一种统计关系,其中一个变量的增加通常伴随着另一个变量的增加,反之亦然。在正相关的关系中,两个变量的变化趋势是同向的。当我们说两个变量正相关时,意味着:

    • 如果第一个变量增加,第二个变量也有很大的概率会增加。

    • 同样,如果第一个变量减少,第二个变量也很可能会减少。

            正相关性并不意味着一个变量的变化直接引起了另一个变量的变化,它仅仅指出了两个变量之间存在的一种统计上的关联性。这种关联性可以是因果关系,也可以是由第三个未观察到的变量引起的,或者是纯属巧合。
            在数学上,正相关性通常用正值的相关系数来表示,这个值介于0和1之间。当相关系数等于1时,表示两个变量之间存在完美的正相关关系,即一个变量的值可以完全由另一个变量的值预测。
            举个例子,假设我们观察到在一定范围内,一个人的身高与其体重呈正相关,这意味着在一般情况下,身高较高的人体重也会较重。但这并不意味着身高直接导致体重增加,而是可能由于营养、遗传、生活方式等因素共同作用的结果。

            负相关性(Negative Correlation)与正相关性刚好相反,但是也说明相关,比如运动频率和BMI体重指数程负相关
            不相关指两者的相关性很小,一个变量变化不会引起另外的变量变化,只是没有线性关系. 比如饭量和智商

    皮尔逊相关系数(Pearson correlation coefficient)是一种度量两个变量之间线性相关性的统计量。它提供了两个变量间关系的方向(正相关或负相关)和强度的信息。皮尔逊相关系数的取值范围是 [−1,1],其中:

    • \rho=1 表示完全正相关,即随着一个变量的增加,另一个变量也线性增加。

    • \rho=-1 表示完全负相关,即随着一个变量的增加,另一个变量线性减少。

    • \rho=0 表示两个变量之间不存在线性关系。

            相关系数\rho的绝对值为0-1之间,绝对值越大,表示越相关,当两特征完全相关时,两特征的值表示的向量是在同一条直线上,当两特征的相关系数绝对值很小时,两特征值表示的向量接近在同一条直线上。当相关系值为负数时,表示负相关

            皮尔逊相关系数:pearsonr相关系数计算公式, 该公式出自于概率论,对于两组数据 𝑋={𝑥1,𝑥2,...,𝑥𝑛} 和 𝑌={𝑦1,𝑦2,...,𝑦𝑛},皮尔逊相关系数可以用以下公式计算:

            

    \bar{x}\bar{y}分别是𝑋和𝑌的平均值

            |ρ|<0.4为低度相关; 0.4<=|ρ|<0.7为显著相关; 0.7<=|ρ|<1为高度相关

    3. API介绍:

            scipy.stats.personr(x, y) 计算两特征之间的相关性,返回对象有两个属性:statistic 皮尔逊相关系数[-1,1];pvalue零假设(了解),统计上评估两个变量之间的相关性,越小越相关。

            示例:

    from scipy.stats import pearsonr
    def association_demo():
         # 1、获取数据
        data = pd.read_csv("src/factor_returns.csv")
        data = data.iloc[:, 1:-2]
         # 计算某两个变量之间的相关系数
        r1 = pearsonr(data["pe_ratio"], data["pb_ratio"])
        print(r1.statistic) #-0.0043893227799362555 相关性, 负数表示负相关,正数表示正相关
        print(r1.pvalue) #0.8327205496590723        相关性,越小越相关
        r2 = pearsonr(data['revenue'], data['total_expense'])
        print(r2) #PearsonRResult(statistic=0.9958450413136111, pvalue=0.0)
        return None
    association_demo()

    1.7.2 主成份分析(PCA)

            PCA的核心目标是从原始特征空间中找到一个新的坐标系统,使得数据在新坐标轴上的投影能够最大程度地保留数据的方差,同时减少数据的维度。

    1. 原理

            x_0投影到L的大小为x_0*cos\alphay_0投影到L的大小为y_0*sin\alpha
            使用(x_0,y_0)表示一个点, 表明该点有两个特征, 而映射到L上有一个特征就可以表示这个点了。这就达到了降维的功能 。
            投影到L上的值就是降维后保留的信息,投影到与L垂直的轴上的值就是丢失的信息。保留信息/原始信息=信息保留的比例
            下图中红线上点与点的距离是最大的,所以在红色线上点的方差最大,粉红线上的刚好相反,所以红色线上点来表示之前点的信息损失是最小的。

    2. 步骤

            用矩阵P对原始数据进行线性变换,得到新的数据矩阵Z,每一列就是一个主成分, 如下图就是把10维降成了2维,得到了两个主成分

            根据主成分的方差等,确定最终保留的主成分个数, 方差大的要留下。一个特征的多个样本的值如果都相同,则方差为0, 则说明该特征值不能区别样本,所以该特征没有用。
            比如下图的二维数据要降为一维数据,图形法是把所在数据在二维坐标中以点的形式标出,然后给出一条直线,让所有点垂直映射到直线上,该直线有很多,只有点到线的距离之和最小的线才能让之前信息损失最小。这样之前所有的二维表示的点就全部变成一条直线上的点,从二维降成了一维。

            上图是一个从二维降到一维的示例:的原始数据为:

    特征1-X1特征2-X2
    -1-2
    -10
    00
    21
    01

            降维后新的数据为:

    特征3-X0
    -3/√2
    -1/√2
    0
    3/√2
    -1/√2

    3. API介绍

            from sklearn.decomposition import PCA
            PCA(n_components=None):
                    主成分分析;
                    n_components:
                            实参为整数时:表示减少到多少特征;
                            实参为小数时:表示降维后保留百分之多少的信息。

    示例1:n_components为小数

    from sklearn.decomposition import PCA
    def pca_demo():
        data = [[2,8,4,5], 
                [6,3,0,8], 
                [5,4,9,1]]
        # 1、实例化一个转换器类, 降维后还要保留原始数据0.95%的信息, 最后的结果中发现由4个特征降维成2个特征了
        transfer = PCA(n_components=0.95)
        # 2、调用fit_transform
        data_new = transfer.fit_transform(data)
        print("data_new:\n", data_new)
        return None
    pca_demo()

    示例2:n_components为整数

    from sklearn.decomposition import PCA
    def pca_demo():
        data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]
        # 1、实例化一个转换器类, 降维到只有3个特征
        transfer = PCA(n_components=3)
        # 2、调用fit_transform
        data_new = transfer.fit_transform(data)
        print("data_new:\n", data_new)
        return None
    pca_demo()
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值