1. 数据获取方法
1.1 数据集分类
- 分类数据:图像分类,一般是以目录的形式分开
- 标注数据:目标检测和图像分割,是有标注数据的
1.2 开源数据集
优点:免费,成本低
-
kaggle数据集下载网址:Find Open Datasets and Machine Learning Projects | Kaggle
-
Hugging Face数据集:https://huggingface.co/datasets
-
各种网站:
https://zhuanlan.zhihu.com/p/648720525
1.3 外包平台
优点:效果好,成本高
外包平台(Amazon Mechanical Turk,阿里众包,百度数据众包,京东微工等)
1.4 自己采集和标注
优点:质量高、效率低、成本高。
工具:labelimg、labelme工具的使用。
pip install labelimg
1.5 通过网络爬虫获取
爬虫工具:request,selenium ...
2. 数据本地化
使用公开数据集时,会自动保存到本地。如果已下载,就不会重复下载。如果需要以图片的形式保存到本地以方便观察和重新处理,可以按照如下方式处理。
2.1 图片本地化
使用一下代码保存图片到本地:
dir = os.path.dirname(__file__)
def save2local():
trainimgsdir = os.path.join(dir, "MNIST/trainimgs")
testimgsdir = os.path.join(dir, "MNIST/testimgs")
if not os.path.exists(trainimgsdir):
os.makedirs(trainimgsdir)
if not os.path.exists(testimgsdir):
os.makedirs(testimgsdir)
trainset = torchvision.datasets.MNIST(
root=datapath,
train=True,
download=True,
transform=transforms.Compose([transforms.ToTensor()]),
)
for idx, (img, label) in enumerate(trainset):
labdir = os.path.join(trainimgsdir, str(label))
os.makedirs(labdir, exist_ok=True)
pilimg = transforms.ToPILImage()(img)
# 保存成单通道的灰度图
pilimg = pilimg.convert("L")
pilimg.save(os.path.join(labdir, f"{idx}.png"))
# 加载测试集
testset = torchvision.datasets.MNIST(
root=datapath,
train=False,
download=True,
transform=transforms.Compose([transforms.ToTensor()]),
)
for idx, (img, label) in enumerate(testset):
labdir = os.path.join(testimgsdir, str(label))
os.makedirs(labdir, exist_ok=True)
pilimg = transforms.ToPILImage()(img)
# 保存成单通道的灰度图
pilimg = pilimg.convert("L")
pilimg.save(os.path.join(labdir, f"{idx}.png"))
print("所有图片保存成功")
2.2 加载图片数据集
直接下载的图片文件目录也可以直接使用:
trainpath = os.path.join(dir, "MNIST/trainimgs")
trainset = torchvision.datasets.ImageFolder(root=trainpath, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)
3. 过拟合处理
3.1 数据增强
可以使用transform完成对图像的数据增强,防止过拟合发生:https://pytorch.org/vision/stable/transforms.html
3.1.1 数据增强的方法
1. 随机旋转
2. 镜像
3. 缩放
4. 图像模糊
5. 裁剪
6. 翻转
7. 饱和度、亮度、灰度、色相
8. 噪声、锐化、颜色反转
9. 多样本增强
SamplePairing操作:随机选择两张图片分别经过基础数据增强操作处理后,叠加合成一个新的样本,标签为原样本标签中的一种。
①、多样本线性插值:Mixup 标签更平滑
②、直接复制:CutMix, Cutout,直接复制粘贴样本
③、Mosic:四张图片合并到一起进行训练
3.1.2 数据增强的好处
查出更多训练数据:大幅度降低数据采集和标注成本;
提升泛化能力:模型过拟合风险降低,提高模型泛化能力
3.2 标准化
3.3 DROP-OUT
用于处理过拟合问题。
3.4 欠拟合注意事项
如果模型在训练集和验证集上表现都不够好,考虑增加模型的层级或训练更多的周期。
4. 训练过程可视化
4.1 wandb.ai
可在控制台看到训练进度。
官方文档有清晰简单的代码及思路,直接使用即可:https://wandb.ai/
4.1.1 安装
pip install wandb
4.1.2 登录
wandb login
复制平台提供的 API key粘贴回车即可(粘贴之后看不到的)。
4.1.3 初始化配置
示例:
import random
# start a new wandb run to track this script
wandb.init(
# set the wandb project where this run will be logged
project="my-awesome-project",
# track hyperparameters and run metadata
config={
"learning_rate": 0.02,
"architecture": "CNN",
"dataset": "CIFAR-100",
"epochs": 10,
}
)
4.1.4 写入训练日志
示例:
# log metrics to wandb
wandb.log({"acc": correct / samp_num, "loss": total_loss / samp_num})
4.1.5 添加模型记录
示例:
# 添加wandb的模型记录
wandb.watch(model, log="all", log_graph=True)
4.1.6 完成
示例:
# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
4.1.7 查看
根据控制台提供的访问地址去查看训练过程数据即可。
数据简单说明:
1. Process GPU Power Usage (W):GPU功率使用情况,以瓦特(W)为单位。
2. Process GPU Power Usage (%):GPU功率使用占GPU总功率的百分比。
3. Process GPU Memory Allocated (bytes):分配给训练过程的GPU内存量,以字节为单位。
4. Process GPU Memory Allocated (%):分配给训练过程的GPU内存占GPU总内存的百分比。
5. Process GPU Time Spent Accessing Memory (%):训练过程中访问GPU内存的时间百分比。
6. Process GPU Temp (°C):GPU温度,以摄氏度(°C)为单位。
4.2 Tensor Board
官方文档:https://pytorch.org/docs/stable/tensorboard.html
4.2.1 准备工作
导入tensorboard操作模块
from torch.utils.tensorboard import SummaryWriter
指定tensorboard日志保存路径:可以指定多个实例对象
dir = os.path.dirname(__file__)
tbpath = os.path.join(dir, "tensorboard")
# 指定tensorboard日志保存路径
writer = SummaryWriter(log_dir=tbpath)
4.2.2 保存训练过程曲线
记录训练数据
# 记录训练数据到可视化面板
writer.add_scalar("Loss/train", loss, epoch)
writer.add_scalar("Accuracy/train", acc, epoch)
训练完后记得关闭
writer.close()
4.2.3 曲线查看
安装:安装的是执行指令,是一个本地化的服务器
pip install tensorboard
在训练完成后,查看训练结果,在当前目录下,打开控制台窗口:
tensorboard --logdir=runs
控制台会提示一个访问地址,用浏览器直接访问即可。http://localhost:6006/
4.2.4 保存网络结构
保存网络结构到tensorboard
# 保存模型结构到tensorboard
writer.add_graph(net, input_to_model=torch.randn(1, 1, 28, 28))
writer.close()
启动tensorboard,在graphs菜单即可看到模型结构
4.2.5 模型参数可视化
# 获取模型参数并循环记录
params = net.named_parameters()
for name, param in params:
writer.add_histogram(f"{name}_{i}", param.clone().cpu().data.numpy(), epoch)
4.2.6 记录训练数据
tensorboard
中的add_image
函数用于将图像数据记录到TensorBoard,以便可视化和分析。这对于查看训练过程中生成的图像、调试和理解模型的行为非常有用,如帮助检查预处理是否生效。
#查看预处理的旋转是否生效
for i, data in enumerate(trainloader, 0):
inputs, labels = data
if i % 100 == 0:
img_grid = torchvision.utils.make_grid(inputs)
writer.add_image(f"r_m_{epoch}_{i * 100}", img_grid, epoch * len(trainloader) + i)
4.2.7 避坑指南
尽可能使用新版本的pytorch。
pip install tensorboard
在创建实例对象时使用默认值。
# 导入训练过程可视化工具tensorboard
from torch.utils.tensorboard import SummaryWriter
# Writer will output to ./runs/ directory by default
writer = SummaryWriter()
启动tensorboard:
tensorboard --logdir=runs
注意:不要在IDE(如vsCode)里面安装tensorboard插件。
5. 验证结果数据化
我们可以把预测结果全部记录下来,以观察其效果,用于分析和评估我们的模型情况。
5.1 数据结果Excel
导入数据分析模块pandas:
import pandas as pd
把推理结果softmax化,并放到全局的列表里面:
#定义全局的 pd_data :10分类,加了分类id 和 分类名称, 12个
pd_data = np.empty((0, 12))
#在训练的过程中把训练结果整理进来
out_softmax = torch.softmax(out, dim=1).cpu().detach().numpy()
target_y = y.cpu().detach().numpy()
#根据目标值找到分类名
target_name = np.array([vaild_dataset.classes[i] for i in target_y])
# 把真实所属分类追加到数据中
out_softmax = np.concatenate(
(out_softmax, target_y.reshape(-1, 1), target_name.reshape(-1, 1)), axis=1
)
#数据追加
pd_data = np.concatenate((pd_data, out_softmax), axis=0)
保存数据到CSV:
# 数据有了,找到列名:和前面追加的目标值及类名要呼应上
columnsn = np.concatenate(
(vaild_dataset.classes, np.array(["target", "真实值"])), axis=0
)
pd_data_df = pd.DataFrame(pd_data, columns=columnsn)
# 把数据保存到Excel:CSV
csvpath = os.path.join(dir, "vaild")
if not os.path.exists(csvpath):
os.makedirs(csvpath)
pd_data_df.to_csv(os.path.join(csvpath, "vaild.csv"), encoding="GBK")
5.2 模型指标矩阵化
5.2.1 混淆矩阵
混淆矩阵是一种特定的表格布局,用于可视化监督学习算法的性能,特别是分类算法。在这个矩阵中,每一行代表实际类别,每一列代表预测类别。矩阵的每个单元格则包含了在该实际类别和预测类别下的样本数量。通过混淆矩阵,我们不仅可以计算出诸如准确度、精确度和召回率等评估指标,还可以更全面地了解模型在不同类别上的性能。
混淆矩阵的四个基本组成部分是:
-
True Positives(TP):当模型预测为正类,并且该预测是正确的,我们称之为真正(True Positive);
-
True Negatives(TN):当模型预测为负类,并且该预测是正确的,我们称之为真负(True Negative);
-
False Positives(FP):当模型预测为正类,但该预测是错误的,我们称之为假正(False Positive);
-
False Negatives(FN):当模型预测为负类,但该预测是错误的,我们称之为假负(False Negative)
5.2.2 常见指标
参考下图
5.2.3 理解对角线
对角线上的元素越大越好
5.2.4 模型指标计算及可视化
1. 分类报告:
csvpath = os.path.join(dir, "vaild")
# 读取CSV数据
csvdata = pd.read_csv(
os.path.join(csvpath, "vaild.csv"), encoding="GBK", index_col=0
)
# 拿到真实标签
true_label = csvdata["target"].values
print(true_label, type(true_label), len(true_label))
# 获取预测标签
predict_label = csvdata.iloc[:, :-2].values
print(predict_label, predict_label.shape)
# 预测分类及分数的提取
predict_label_ind = np.argmax(predict_label, axis=1)
predict_label_score = np.max(predict_label, axis=1)
print(predict_label_ind, predict_label_score)
# 根据预测值和真实值生成分类报告
report = classification_report(y_true=true_label, y_pred=predict_label_ind)
print(report)
效果:
2. 准确度(Accuracy):
# 获取准确度
acc = accuracy_score(y_true=true_label, y_pred=predict_label_ind)
print("准确度:", acc)
3. 精确度(Precision):
# 获取精确度Precision
precision = precision_score(y_true=true_label, y_pred=predict_label_ind, average="macro")
print("精确度:", precision)
4. 召回率(Recall):
#召回率(Recall)
recall = recall_score(y_true=true_label, y_pred=predict_label_ind, average="macro")
print("召回率:", recall)
5. F1分数(F1-Score):
#### F1分数(F1-Score)
f1 = f1_score(y_true=true_label, y_pred=predict_label_ind, average="macro")
print("F1分数:", f1)
6. 混淆矩阵及可视化:
import os
from sklearn.metrics import *
import pandas as pd
from matplotlib import pyplot as plt
# plt中文乱码问题
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
# 路径兼容处理
current_path = os.path.dirname(__file__)
excel_path = os.path.relpath(
os.path.join(current_path, r"./metrics", "validation_metrics.xlsx")
)
def report():
# 读取Excel数据
excel_data = pd.read_excel(excel_path)
label = excel_data["label"].values
predict = excel_data["predict"].values
# 整体报表
labels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
matrix = confusion_matrix(label, predict)
print(matrix)
# 下面的代码就是简单的plt绘制过程
plt.matshow(matrix, cmap=plt.cm.Greens)
# 显示颜色条
plt.colorbar()
# 显示具体的数字的过程
for i in range(len(matrix)):
for j in range(len(matrix)):
plt.annotate(
matrix[i, j],
xy=(j, i),
horizontalalignment="center",
verticalalignment="center",
)
# 美化的东西
plt.xlabel("Pred labels")
plt.ylabel("True labels")
plt.xticks(range(len(labels)), labels, rotation=45)
plt.yticks(range(len(labels)), labels)
plt.title("训练结果混淆矩阵视图")
plt.show()
if __name__ == "__main__":
report()
效果: