HuggingFace基础知识和环境安装
常见自然语言处理任务
- 情感分析(sentiment-analysis):对给定的文本分析其情感极性
- 文本生成(text-generation):根据给定的文本进行生成
- 命名实体识别(ner):标记句子中的实体
- 阅读理解(question-answering):给定上下文与问题,从上下文中抽取答案
- 掩码填充(fill-mask):填充给定文本中的掩码词
- 文本摘要(summarization):生成一段长文本的摘要
- 机器翻译(translation):将文本翻译成另一种语言
- 特征提取(feature-extraction):生成给定文本的张量表示
- 对话机器人(conversional):根据用户输入文本,产生回应,与用户对话
自然语言处理的几个阶段
- 第一阶段:统计模型 + 数据(特征工程)
决策树、SVM、HMM、 CRF、 TF-IDF、BOW - 第二阶段:神经网络 + 数据
Linear, CNN, RNN, GRU、 LSTM, Transformer, Word2vec, Glove - 第三阶段:神经网络+预训练模型 + (少量)数据
GPT, BERT, RoBERTa, ALBERT, BART, T5 - 第四阶段:神经网络 + 更大的预训练模型 +Prompt
ChatGPT、 Bloom, LLaMA、Alpaca、V