
AI大模型应用【理论】
文章平均质量分 92
理论
一叶千舟
专注AI大模型智能应用分享,掌控智能时代创新密钥
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【MCP基础概念】开放连接未来:深入解读模型上下文协议
在 AI 助手迅猛发展的今天,我们迎来了一个重大里程碑 —— 模型上下文协议(Model Context Protocol,简称 MCP) 的开源发布。它是一项旨在打破信息孤岛、统一 AI 与数据系统连接方式的开放标准,为 AI 系统提供更可靠的数据访问路径,释放出前沿模型的真正潜力。原创 2025-06-18 19:47:35 · 775 阅读 · 0 评论 -
【Self-Ask with Search Agent机制概述】利用TavilyAnswer实现搜索代理
通过 Self-Ask with Search 代理,结合了大语言模型(qwen-plus)和搜索工具(TavilyAnswer),使得模型能够在处理输入时不仅通过推理生成答案,还能动态地从网络获取实时信息。核心流程包括加载模板、创建代理、并通过 AgentExecutor 执行查询,从而提供更加准确和及时的答案。原创 2025-06-08 19:22:56 · 1098 阅读 · 0 评论 -
【全方位掌握 LangChain Agent】让语言模型真正“动”起来!
Agent 是让语言模型具备自主推理、选择工具并多步执行任务的机制。原创 2025-06-07 18:36:49 · 864 阅读 · 0 评论 -
【向量化模型如何私有化部署】一文说清原理、流程与最佳实践
摘要: 随着RAG技术在企业的广泛应用,向量化模型(Embedding Model)的私有化部署需求日益增长。本文系统介绍了本地部署的意义(数据安全、成本可控等)、常见开源模型(如bge-base-zh、all-MiniLM-L6-v2),并详细演示了使用HuggingFace模型+FAISS构建本地向量数据库的全流程。文章对比了本地部署与API调用的优劣,提供了进阶服务化方案,并通过一个完整项目示例展示"本地embedding+FAISS检索"的实现方法。最后强调,私有化部署是构建安全原创 2025-06-04 18:25:21 · 1237 阅读 · 0 评论 -
【深入 LangChain 的 Model I/O】提示设计、模型调用与输出解析全解析
阶段作用提示模板构造输入给模型的内容,支持变量插入、格式统一等模型调用使用通用接口调用各种 LLM(OpenAI、Qwen、Claude 等)输出解析将模型的非结构化输出解析为结构化、可用的程序化格式这三个环节各自独立、可组合,也可以统一组成一个强大的“提示-执行-解析”流水线。动态插入变量:根据用户输入自动填充提示内容;提升可读性:统一格式,逻辑清晰;支持复用与维护:更改模板内容不会影响整个应用逻辑。原创 2025-06-03 20:29:50 · 991 阅读 · 0 评论 -
【LangServe部署流程】5 分钟部署你的 AI 服务
摘要:本教程介绍如何使用LangServe将LangChain项目部署为RESTful API服务。内容包括:1) 安装依赖和环境准备;2) 构建LangChain可运行链(如Poetry生成器);3) 通过LangServe快速发布API;4) 重点演示检索增强生成(RAG)应用部署流程,包括文档向量化、语义搜索和LLM问答;5) 提供交互式API文档和扩展建议。LangServe作为官方工具,可将LangChain链、Agent或RAG系统一键转换为Web服务,支持OpenAI/Qwen等模型,适用于快原创 2025-06-03 19:58:18 · 1024 阅读 · 0 评论 -
【LangServe】为现代 AI 应用赋能的服务框架——附执行代码
LangServe是一个专为大语言模型设计的高效服务框架,旨在简化模型部署和管理流程。它提供统一API层、负载均衡、安全控制等核心功能,支持多模型管理和多租户隔离。该框架适合企业开发者、AI平台运营商等需要快速集成语言模型的场景。通过RESTful API接口,开发者可以轻松实现文本生成、聊天机器人等功能,同时获得稳定的高并发处理能力。LangServe显著降低了语言模型的应用门槛,为AI技术落地提供了可靠的技术支撑。原创 2025-06-03 18:49:41 · 889 阅读 · 0 评论 -
【LLM vs Agent】从语言模型到智能体,人工智能迈出的关键一步
✅ LLM 是 AI 智能的基础,而 Agent 是实现目标的行动者。原创 2025-06-02 23:45:50 · 1360 阅读 · 0 评论 -
微调大模型:什么时候该做,什么时候不该做?
微调(Fine-tuning)是在预训练模型的基础上,用自己的一小批任务/领域数据,继续训练模型,让它对特定任务表现更好。它不是从零训练,也不是提示工程,而是**“在通用模型基础上的定制升级”**。但微调不是银弹。很多人听说“微调能变得更强”,就一股脑想上,却忽视了它的成本、风险、收益比。微调的利微调的弊精准定制行为数据/训练成本高控制输出结构更新不灵活降低 API 成本模型部署维护重模仿风格语气数据质量门槛高微调不是 AI 能力的终点,而是工程化决策的一部分。原创 2025-06-01 23:55:49 · 1197 阅读 · 0 评论 -
【LangGraph】智能体工作流的新基石
非线性流程、循环、分支、动态决策全部支持✅ 使用 LangGraph 的最佳时机:你构建的是对话智能体、多步骤流程、多智能体系统你需要状态追踪、循环逻辑、条件判断你希望高可控、高扩展性你具备一定 Python 编程能力,能理解工作流抽象结构❌ 你可能不适合用 LangGraph 的场景:只需要一个简单的问答接口或线性调用链项目极度敏捷快速(原型阶段)团队对状态逻辑和图结构建模掌握不熟练📌推荐组合使用:LangGraph + LangChain。原创 2025-05-28 17:53:27 · 1304 阅读 · 0 评论 -
【LangGraph 入门指南】为智能代理打造灵活可控的工作流框架
LangGraph是一个基于图结构的新型LLM工作流框架,由LangChain团队推出。它通过有向图节点表示操作(如调用LLM、使用工具等),边定义执行路径,支持条件分支和循环逻辑。其核心优势包括内置状态管理、支持循环工作流和多代理协同,特别适合构建需要记忆上下文、多轮推理的智能系统。相比传统的线性工作流,LangGraph更适合开发复杂代理应用,如多轮对话机器人、多阶段任务执行系统等。该框架可与LangChain组件结合使用,为开发者提供更强大的AI应用构建能力。原创 2025-05-28 16:58:36 · 982 阅读 · 0 评论 -
【LlamaIndex & Workflow】 重构你的大模型应用流程,全面掌握 LlamaIndex 工作流机制
Workflow(工作流)是一种将复杂任务分解为多个独立步骤的结构化方法,特别适用于需要大模型参与的多阶段任务(如智能问答、数据分析等)。其核心是事件驱动机制,各步骤通过事件传递信息,实现解耦和灵活扩展。相比传统代码,Workflow具有可视化、易维护和可动态调整的优势。实际应用包括文档预处理、问答系统构建(RAG)、检索增强等场景,通过模块化组合实现高效任务编排。例如在问答系统中,从用户提问到生成回答可拆分为检索、排序、Prompt构造等多个步骤,每个环节可独立优化。这种结构化流程设计使复杂系统更清晰、可原创 2025-05-27 23:52:14 · 977 阅读 · 0 评论 -
【向量数据库选型实战】FAISS vs Chroma vs Milvus vs Qdrant 全面对比
向量数据库选型指南 本文对比了4种常用向量数据库的特点和适用场景: 1. 核心对比 Qdrant:适合RAG系统、实时更新、结构化检索,部署简单 FAISS:极致性能但静态数据,适合研究/原型 Chroma:轻量级,适合POC/教学 Milvus:企业级分布式方案,适合海量数据 2. 选型建议 生产级RAG系统 → Qdrant 离线批量检索 → FAISS 快速原型验证 → Chroma 企业多模态系统 → Milvus 3. 关键指标 包括开源支持、持久化能力、API接口、实时更新、分布式支持等维度对比原创 2025-05-26 15:29:27 · 1971 阅读 · 0 评论 -
【LlamaIndex 核心模块】打造高效的知识增强型 LLM 应用
LlamaIndex是一个帮助企业构建AI知识助手的开源框架,支持将私有数据转化为可用知识。其核心流程包括:数据接入(支持180+格式)、结构化加载、文本切分、索引建立(向量/关键词等)、语义检索、LLM生成回答及任务编排功能。该框架兼容主流Embedding和LLM模型,适合需要快速搭建基于私有数据的问答系统、具备语义检索能力,并希望实现多轮对话或企业级应用的开发者。LlamaIndex为RAG应用提供了完整的解决方案。原创 2025-05-25 09:16:27 · 1187 阅读 · 0 评论 -
【LlamaIndex 全面解析】构建企业级 AI 知识助手的核心框架
LlamaIndex是一个开源框架,专为构建基于私有知识库的RAG(检索增强生成)应用而设计。它支持多种数据源接入(文档、数据库、API等),提供完整的索引构建、检索和问答流程。核心功能包括文本切分、向量化、索引建立和智能查询,适用于企业知识问答、文档助手等场景。与LangChain相比,LlamaIndex更专注于高效的数据索引和检索,适合快速搭建问答系统。开发者可通过简洁API实现本地文档与LLM的交互,是构建私有化AI助手的理想工具。原创 2025-05-25 00:15:31 · 1135 阅读 · 0 评论 -
【大语言模型开发框架】选对框架,事半功倍!
摘要: 大语言模型开发框架(如LangChain、LlamaIndex等)是提升LLM应用开发效率的关键工具,其核心价值体现在两大方面:一是通过抽象第三方能力(如模型API、向量数据库)实现外部依赖解耦,支持灵活切换组件;二是封装通用逻辑(如Prompt管理、多轮对话),降低开发复杂度。优秀框架能显著提升可靠性、可维护性和扩展性,减少重复造轮子。实际场景中,框架可简化模型切换、流式输出等复杂操作,避免手动适配的繁琐。开发者应聚焦于选择合适框架,而非是否使用框架,以高效应对LLM应用的挑战。原创 2025-05-24 19:22:31 · 910 阅读 · 0 评论 -
【用好父文档检索器,让RAG不再两难】—— 解决文档切割与召回质量的矛盾
LangChain 文档检索神器来了!Embedding 用小块,回答用大块,精度与覆盖双赢 🧠+📚原创 2025-05-21 17:21:25 · 722 阅读 · 0 评论 -
【RAG 评估指标】从五大维度深度解读 如何判断智能体的答案更可信?
RAG系统评估的五大核心指标 评估RAG(检索增强生成)系统时,需从五个维度综合衡量答案质量: 忠实度:答案是否严格基于上下文事实,避免虚构 答案相关性:回答是否直接、完整地解决问题 上下文精度:检索内容是否精准匹配问题需求 上下文召回率:是否包含了支撑答案的全部关键信息 上下文相关性:检索结果是否简洁聚焦,无冗余信息 这些指标可用于优化检索策略、模型训练及系统对比,不同场景可侧重不同指标(如精准问答优先忠实度,文档摘要侧重召回率)。科学评估能显著提升RAG系统的可靠性和实用性。原创 2025-05-21 16:57:36 · 1371 阅读 · 0 评论 -
【超长上下文检索评测】Qwen-Agent 智能体 vs 传统RAG vs 大上下文模型,谁更强?
阿里在Qwen-Agent项目中,针对大模型处理超长文本的挑战,提出了层级智能体方案,并在两个长文本基准测试中进行了评估。测试集包括NeedleBench和LV-Eval,分别测试模型在大量信息中定位关键信息及综合多证据的能力。实验对比了三种策略:32k-模型、4k-RAG和4k-智能体。结果显示,在短文本中32k模型表现较好,但在长文本和多跳问题中,4k-RAG和4k-智能体表现更优,尤其是4k-智能体在复杂推理任务中表现最佳。实验表明,单纯扩展上下文窗口并不能提升理解力,关键在于主动提取和多步推理能力。原创 2025-05-21 15:32:34 · 1295 阅读 · 0 评论 -
【Qwen-Agent + 微调 】= 百万Token级大模型2
文章探讨了如何通过多层级智能体架构(Qwen-Agent)解决大语言模型在处理百万字级别上下文时的挑战。传统的LLM如ChatGPT、Claude、Qwen等,虽然支持8K到128K的token处理,但在面对更长的文本时显得力不从心。Qwen-Agent通过三个层级的设计,逐步提升处理能力:Level1通过关键词驱动的快速检索定位相关内容;Level2通过智能分块过滤和再检索提高精准度;Level3则通过多跳推理智能体(ReAct+工具调用)实现复杂问题的分阶段解答。这种分层处理策略不仅提升了模型的理解和推原创 2025-05-21 13:35:29 · 1009 阅读 · 0 评论 -
【Qwen-Agent + 微调 】= 百万Token级大模型
现代大模型如 GPT-4、Claude 3、Qwen-Max 等,正朝着处理长上下文的方向发展,例如 128K,甚至百万级别的上下文(1M tokens)。但很多模型原生支持的上下文长度较短,比如 8K 或 32K。那么,如何“扩展”它们的能力去处理更长的上下文呢?原创 2025-05-21 11:16:48 · 1058 阅读 · 0 评论 -
【深入理解索引扩展—2】提升智能检索系统召回质量的3大利器
随着大模型和RAG(Retrieval-Augmented Generation)技术的发展,构建高效、精准的检索系统成为关键挑战。传统向量检索在语义理解上具有优势,但在召回覆盖率和精确匹配方面仍有提升空间。为此,研究者提出了多种索引扩展技术,主要包括离散索引扩展、连续索引扩展、混合索引召回和Small-to-Big策略。离散索引通过关键词抽取和实体识别提升精准匹配能力;连续索引融合多种向量模型,增强语义覆盖;混合索引结合离散与连续索引,实现高覆盖率与高精度;Small-to-Big策略则通过快速定位小规模原创 2025-05-20 23:23:57 · 854 阅读 · 0 评论 -
【深入理解索引扩展—1】提升智能检索系统召回质量的3大利器
在构建智能问答系统、RAG应用或知识库检索系统时,召回质量的关键在于索引的构建。本文介绍了三种现代索引扩展技术:离散索引扩展、连续索引扩展和混合索引召回。离散索引扩展通过关键词抽取和实体识别提升精确匹配能力;连续索引扩展利用多向量模型融合增强语义泛化;混合索引召回则结合离散和向量索引,兼顾精准与泛化。这些技术既可单独使用,也可互补组合,显著提升召回的准确性和多样性,适用于问答系统、自然语言问答、RAG应用等多种场景。原创 2025-05-20 20:32:34 · 1199 阅读 · 0 评论 -
【 双向改写】让检索更聪明的秘密武器(Query2Doc & Doc2Query)
双向改写技术,包括Query2Doc和Doc2Query,是解决智能问答系统中查询与文档匹配问题的有效方法。Query2Doc通过扩展短查询语句,使其更接近文档的语义,从而提高匹配效率。例如,将“如何提高模型训练效率?”扩展为包含具体技术方法的详细说明。Doc2Query则从文档中生成可能的用户查询,帮助构建查询与文档的映射,适用于文档内容庞大或结构不统一的场景。这两种技术通过丰富语义和增加查询入口,优化了向量匹配和检索模型的训练数据,广泛应用于RAG问答系统、搜索引擎优化和文档预处理等领域。实现上,可以利原创 2025-05-20 19:44:25 · 1152 阅读 · 0 评论 -
【嵌入模型与向量数据库】
向量数据库(VectorDatabase)是一种专门用于存储、管理和检索高维向量数据的数据库系统,主要用于实现相似度搜索(SimilaritySearch)。向量是机器学习和人工智能中表示数据的数学结构,如图片、文本、用户兴趣等都可以通过神经网络模型转换为嵌入向量(embedding)。传统数据库不适合处理向量的相似性检索,而向量数据库则能高效支持语义搜索、推荐系统、图像识别等需求。其特点包括支持高维向量、近似最近邻搜索(ANN)、可扩展性和多模态支持。常见的向量数据库产品有FAISS、Milvus、Wea原创 2025-05-14 23:55:25 · 911 阅读 · 0 评论 -
【Embedding Models】嵌入模型选择指南
国内主流嵌入模型主要分为通用中文嵌入模型、多语言与混合场景模型、轻量化与低成本模型以及长文本与高维度模型。商汤Piccolo2在中文评测中表现优异,支持长文本处理和高精度语义检索;百度BGE系列专为中文优化,适合企业级问答系统;Text2Vec系列开源且支持本地部署,适合数据隐私敏感场景。BGE-M3支持多语言混合检索,适合跨境电商和多语言内容平台;BGE-small系列适合资源受限的边缘计算场景;阿里云Tao-8k则适合复杂文档分析。选型时需考虑数据安全、中文场景优化、性能与资源权衡以及企业级服务需求。性原创 2025-05-14 17:27:21 · 1736 阅读 · 0 评论 -
【Langchain】根据LCEL规范实现Runable interface
LCEL(LangChain Expression Language)是LangChain中用于组合和控制语言模型、工具、链等逻辑的规范。在LCEL中,任何可执行的模块都应实现Runnable接口,该接口的核心方法是invoke(同步)或ainvoke(异步)。通过实现这些方法,自定义组件可以与LLM、Chain、Tool等模块无缝组合。文章展示了如何创建简单的Runnable,如反转字符串和添加时间戳,并进一步演示了如何实现一个复杂的Runnable,通过调用Open-Meteo API获取城市实时气温。原创 2025-05-10 15:29:19 · 561 阅读 · 0 评论 -
探索开源大模型体系:当今AI的引领者
开源大模型体系的崛起,为AI开发者和研究者提供了前所未有的机遇。从Hugging Face的易用性到OpenAI GPT的创新能力,从DeepSpeed的高效训练到Megatron-LM的强大性能,再到AllenNLP的研究支持,这些大模型相辅相成,共同推动着人工智能技术的进步。随着开源社区的不断发展,我们也期待未来能有更多杰出的开源大模型出现,推动更多创新应用的落地。在这个快速发展的领域,掌握这些大模型的特点和应用,将有助于开发者和研究者在AI的浪潮中立于不败之地。原创 2025-05-06 23:57:13 · 681 阅读 · 0 评论 -
【最大token限制】如何科学管理Token?大模型应用开发的成本与性能优化指南——附代码
优秀的AI开发者如同精明的船长:通过tiktoken掌握语言海洋的深度用max_tokens把控航行的方向借助监控系统预警潜在的风暴在这个按Token计费的时代,对语言单位的精细管理,将成为区分优秀应用与平庸产品的关键分水岭。原创 2025-05-04 20:56:38 · 1390 阅读 · 0 评论 -
【多智能体系统通信机制】消息传递与黑板系统的博弈与融合
消息传递与黑板系统,如同人类的“语言”与“文字”,各有其适用之境。设计MAS通信机制时,需在实时性、复杂度与可靠性间找到平衡。当智能体既能“窃窃私语”,又能“共绘蓝图”,多智能体系统的协作智慧将真正超越个体极限,开启人机共生的新篇章。讨论话题:如果你要设计一个智慧农业MAS,你会选择哪种通信机制?为什么?欢迎分享你的方案!原创 2025-04-24 18:32:11 · 880 阅读 · 0 评论 -
【多智能体系统组织方式解析】五大架构赋能智能协作
多智能体系统的组织方式,本质是权力、效率与灵活性的三角博弈。未来的MAS或将融合多种模式——平时以单元结构运行,遇到突发任务动态切换为联盟,而关键任务时升级为团队。当智能体不仅能自主行动,还能自主“选择如何协作”,我们便真正迈向了自组织智能的新纪元。讨论话题:如果你要设计一个外卖配送MAS,你会选择哪种组织方式?为什么?欢迎分享你的设计思路!原创 2025-04-24 16:56:13 · 1521 阅读 · 0 评论 -
【多智能体系统(MAS)】协作智能的奥秘与未来应用
多智能体系统(MAS)自主性:独立感知环境、决策和行动。交互性:通过通信或环境间接协作/竞争。目标驱动:为实现个体或集体目标而行动。核心思想:将复杂问题拆解为子任务,分配给多个智能体并行处理,最终通过协作达成全局目标。MAS vs. 单智能体系统对比维度单智能体系统多智能体系统(MAS)任务处理集中式,依赖单一实体分布式,多实体协作可靠性单点故障风险高局部故障不影响全局(高容错)灵活性适应静态环境动态调整,适应复杂变化成本需高性能硬件资源分散,低成本部署。原创 2025-04-24 15:42:27 · 1007 阅读 · 0 评论 -
【多智能体系统】特点解析与高效组织策略
多智能体系统的魅力,在于将简单的个体行为转化为复杂的群体智能。从蚂蚁觅食的启发,到城市大脑的构建,MAS的设计哲学始终围绕着“整体大于部分之和”。未来的智能体系统,或许不再是冰冷工具的集合,而是能感知环境、自适应调整、甚至具备“群体意识”的有机网络。当每个智能体既独立又共生,我们离真正的“智能生态”也将更近一步。互动话题:你认为未来的多智能体系统会在哪些领域率先突破?欢迎留言讨论!原创 2025-04-24 15:22:44 · 1008 阅读 · 0 评论 -
从感知到行动:大模型时代下AI Agent的进化之路
在人工智能领域,Agent(智能体)是一个古老而经典的概念。它指的是一种能够自主感知环境、理解信息、规划决策并执行任务的软件实体。让机器像人类一样思考和行动。随着大语言模型(LLM)的爆发式发展,AI Agent的能力被推向全新高度。借助大模型的“大脑”,Agent不仅能够更自然地与人类交互,还能完成复杂任务的自主闭环处理。本文将深入解析Agent的核心原理,并探讨大模型如何重塑这一领域的未来。从“机械执行命令”到“自主思考行动”,AI Agent的进化本质是人类认知边界的延伸。原创 2025-04-24 13:58:09 · 696 阅读 · 0 评论 -
【RAG系统】7大关键评估指标
在企业内部当中,如果想要去提高公司内部某些领域的运营效率(如公司内部规章:新员工可以通过该应用进行了解),构建一个RAG应用,我们就需要准备一堆的知识库文档塞进去,通过检索实现又快又准的信息。但既然是大模型,那必然会存在穿帮,出现幻觉的情况。本文件通过几个指标详细说明:如何从一个反馈乱七八糟的RAG系统,到现在逐渐走向稳定的生产环境?转载 2025-04-20 19:05:36 · 274 阅读 · 0 评论 -
【LLMs 应用开发框架 】Semantic Kernel 和 LangChain 比较
Semantic Kernel生态比起 LangChain 还差点,但是背靠大厂“巨硬”,这点也能快速赶上,设计整体奔着构建生产级应用去的,把LangChain的一些缺点基本都规避了。的封装实现为例,将向量数据库和搜索引擎结合起来,只需几行代码就可以完成复杂功能,加速MVP实现,需求验证。LangChain 的缺点主要是过度封装,Prompt 模板组件做这么抽象实在没必要,应用调试和生产环境可观测性方面都不太友好,软件工程方面的组织相对较差。LangChain 的优势在于丰富的组件支持,以。转载 2025-04-18 21:02:38 · 95 阅读 · 0 评论 -
Semantic Kernel 核心组件 Pipeline:AI 应用的流程引擎
Pipeline 是 Semantic Kernel 中用于将多个技能或模型按逻辑顺序串联,并通过自动化上下文传递与异步执行来编排复杂 AI 任务的核心流程引擎。原创 2025-04-18 17:30:42 · 1390 阅读 · 0 评论 -
【Semantic Kernel核心组件】planner:大模型时代的智能任务编排引擎
Semantic Kernel的Planner组件正在重塑AI应用开发范式。通过将自然语言转化为可执行计划,开发者可以专注业务逻辑创新,而无需深究底层实现细节。随着1.0正式版的发布,该组件已在实际生产环境经受住日均百万级调用的考验(微软技术博客数据)。对于渴望拥抱智能编排技术的开发者而言,现在正是深入探索Planner组件的最佳时机。原创 2025-04-18 16:45:24 · 1464 阅读 · 0 评论 -
【Semantic Kernel核心组件】Plugin:连接AI与业务逻辑的桥梁
Plugin是连接大语言模型(LLM)与确定性代码的核心组件。它通过将自然语言语义与程序函数绑定,实现了从“不确定的AI推理”到“确定性的业务逻辑”的转化。例如,用户可以通过自然语言指令“购买3斤苹果”,触发SK调用后台的库存扣减和支付接口。:LLM生成的文本具有不确定性(如“购买水果”可能对应多种操作),而Plugin通过预定义的函数和参数约束,将模糊指令转化为精准动作。:每个Plugin可独立开发、测试和部署,支持跨项目复用。执行结果:北京天气:25℃ 晴,库存更新:苹果剩余97件。原创 2025-04-17 18:23:03 · 703 阅读 · 0 评论 -
【Semantic Kernel核心组件】Kernel:掌控AI编排的“中央处理器“
它如同智能应用的"操作系统内核",通过统一接口实现大语言模型(LLM)与传统代码的深度协同(网页4/网页8)。作为Semantic Kernel(SK)框架的"中央处理器",Kernel承担着。:内置请求追踪与性能指标。:使用YAML管理模型参数。原创 2025-04-17 17:30:50 · 622 阅读 · 0 评论