【博弈论】两人轮流拿石子谁会赢呢?(Nim游戏的完整证明)

文章介绍了Nim游戏的规则,其中两位玩家轮流从任意一堆石子中拿走任意数量的石子。如果所有石子异或值不等于0,则先手玩家有必胜策略;反之,如果异或值等于0,则先手玩家必败。证明过程中涉及到了二进制和异或运算的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Nim游戏

设n堆石子的个数分别为:[a1,a2,a3,...,ana_1,a_2,a_3,...,a_na1,a2,a3,...,an],两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

结论

a1⊕a2⊕a3⊕...⊕an≠0a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n \neq 0a1a2a3...an=0 则先手必胜
a1⊕a2⊕a3⊕...⊕an=0a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = 0a1a2a3...an=0 则先手必败

证明

  1. 当所有石子个数都为0时:0⊕0⊕0...⊕0=00 \oplus 0 \oplus 0 ... \oplus 0 = 0000...0=0
  2. 当n堆石子的个数分别为:[a1,a2,a3,...,ana_1,a_2,a_3,...,a_na1,a2,a3,...,an]时
    2.1 若 a1⊕a2⊕a3⊕...⊕an=x≠0a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n = x \neq 0a1a2a3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xKazimierzx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值