Sleuth(Micrometer)+ZipKin分布式链路追踪

本文介绍了在SpringBoot3中,如何使用Micrometer替换Sleuth进行分布式链路追踪,以及如何结合Zipkin进行实时监控和性能分析,包括配置、依赖管理以及控制器示例。重点讨论了在大规模微服务环境中解决链路追踪、性能瓶颈识别和故障定位等问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sleuth(Micrometer)+ZipKin分布式链路追踪

Micrometer

springboot3之前还可以用sleuth,springboot3之后就被Micrometer所替代

官网https://github.com/spring-cloud/spring-cloud-sleuth

为什么会出现这个技术?

在微服务框架中,一个由客户端发起的请求在后端系统中会经过多个不同的的服务节点调用来协同产生最后的请求结果,每一个前段请求都会形成一条复杂的分布式服务调用链路,链路中的任何一环出现高延时或错误都会引起整个请求最后的失败。

在分布式与微服务场景下,我们需要解决如下问题:

  • 在大规模分布式与微服务集群下,如何实时观测系统的整体调用链路情况。
  • 在大规模分布式与微服务集群下,如何快速发现并定位到问题。
  • 在大规模分布式与微服务集群下,如何尽可能精确的判断故障对系统的影响范围与影响程度。
  • 在大规模分布式与微服务集群下,如何尽可能精确的梳理出服务之间的依赖关系,并判断出服务之间的依赖关系是否合理。
  • 在大规模分布式与微服务集群下,如何尽可能精确的分析整个系统调用链路的性能与瓶颈点。
  • 在大规模分布式与微服务集群下,如何尽可能精确的分析系统的存储瓶颈与容量规划。

分布式链路追踪原理(具体讲解看尚硅谷2024springCloudP60)

请添加图片描述

Zipkin

分布式链路跟踪系统图形化的工具,Zipkin 是 Twitter 开源的分布式跟踪系统,能够收集微服务运行过程中的实时调用链路信息,并能够将这些调用链路信息展示到Web图形化界面上供开发人员分析,开发人员能够从ZipKin中分析出调用链路中的性能瓶颈,识别出存在问题的应用程序,进而定位问题和解决问题。

官网https://zipkin.io/

作用就是美观

下载方式 需要配置java17或更高

Java

If you have Java 17 or higher installed, the quickest way to get started is to fetch the latest release as a self-contained executable jar:

curl -sSL https://zipkin.io/quickstart.sh | bash -s
java -jar zipkin.jar

其它下载方式

https://zipkin.io/pages/quickstart

Zipkin服务默认访问地址http://localhost:9411/

Micrometer+ZipKin链路监控实例

总工程maven依赖

        <micrometer-tracing.version>1.2.0</micrometer-tracing.version>
        <micrometer-observation.version>1.12.0</micrometer-observation.version>
        <feign-micrometer.version>12.5</feign-micrometer.version>
        <zipkin-reporter-brave.version>2.17.0</zipkin-reporter-brave.version>

提供者maven依赖

 <!--micrometer-tracing指标追踪  1-->
        <dependency>
            <groupId>io.micrometer</groupId>
            <artifactId>micrometer-tracing</artifactId>
        </dependency>
        <!--micrometer-tracing-bridge-brave适配zipkin的桥接包 2-->
        <dependency>
            <groupId>io.micrometer</groupId>
            <artifactId>micrometer-tracing-bridge-brave</artifactId>
        </dependency>
        <!--micrometer-observation 3-->
        <dependency>
            <groupId>io.micrometer</groupId>
            <artifactId>micrometer-observation</artifactId>
        </dependency>
        <!--feign-micrometer 4-->
        <dependency>
            <groupId>io.github.openfeign</groupId>
            <artifactId>feign-micrometer</artifactId>
        </dependency>
        <!--zipkin-reporter-brave 5-->
        <dependency>
            <groupId>io.zipkin.reporter2</groupId>
            <artifactId>zipkin-reporter-brave</artifactId>
        </dependency>

提供者application.yaml配置

# ========================zipkin===================
management:
  zipkin:
    tracing:
      endpoint: http://localhost:9411/api/v2/spans
  tracing:
    sampling:
      probability: 1.0 #采样率默认为0.1(0.1就是10次只能有一次被记录下来),值越大收集越及时。

提供者controller

 /**
     * Micrometer(Sleuth)进行链路监控的例子
     * @param id
     * @return
     */
    @GetMapping(value = "/pay/micrometer/{id}")
    public String myMicrometer(@PathVariable("id") Integer id)
    {
        return "Hello, 欢迎到来myMicrometer inputId:  "+id+" \t    服务返回:" + IdUtil.simpleUUID();
    }

消费者maven依赖

  <!--micrometer-tracing指标追踪  1-->
    <dependency>
        <groupId>io.micrometer</groupId>
        <artifactId>micrometer-tracing</artifactId>
    </dependency>
    <!--micrometer-tracing-bridge-brave适配zipkin的桥接包 2-->
    <dependency>
        <groupId>io.micrometer</groupId>
        <artifactId>micrometer-tracing-bridge-brave</artifactId>
    </dependency>
    <!--micrometer-observation 3-->
    <dependency>
        <groupId>io.micrometer</groupId>
        <artifactId>micrometer-observation</artifactId>
    </dependency>
    <!--feign-micrometer 4-->
    <dependency>
        <groupId>io.github.openfeign</groupId>
        <artifactId>feign-micrometer</artifactId>
    </dependency>
    <!--zipkin-reporter-brave 5-->
    <dependency>
        <groupId>io.zipkin.reporter2</groupId>
        <artifactId>zipkin-reporter-brave</artifactId>
    </dependency>
 

消费者application.yaml配置

# zipkin图形展现地址和采样率设置
management:
  zipkin:
    tracing:
      endpoint: http://localhost:9411/api/v2/spans
  tracing:
    sampling:
      probability: 1.0 #采样率默认为0.1(0.1就是10次只能有一次被记录下来),值越大收集越及时。

消费者controller


    @GetMapping(value = "/feign/micrometer/{id}")
    public String myMicrometer(@PathVariable("id") Integer id)
    {
        return payFeignApi.myMicrometer(id);
    }

GetMapping(value = “/feign/micrometer/{id}”)
public String myMicrometer(@PathVariable(“id”) Integer id)
{
return payFeignApi.myMicrometer(id);
}


<think>嗯,用户问的是Spring Boot 3和Spring Kafka如何支持链路追踪,之前Spring Boot 2用的是Spring Cloud Sleuth,但现在Spring Boot 3里已经没有这个了。首先,我需要确认一下Spring Boot 3和Spring Cloud Sleuth的关系。对了,Spring Cloud Sleuth已经迁移到了Micrometer Tracing项目,所以原来的方式可能已经过时了。 接下来,用户可能想知道现在应该用什么替代方案。Micrometer Tracing应该是新的标准,它支持Brave和OpenTelemetry。需要确认Spring Boot 3是否默认集成了Micrometer,以及如何配置它来支持Kafka的链路追踪。 然后,关于具体的步骤,可能需要添加相关依赖,比如Micrometer Tracing Bridge,以及Brave或OpenTelemetry的实现。然后配置Kafka的Producer和Consumer来注入追踪信息。可能需要手动添加拦截器,或者通过配置自动完成。 另外,用户可能会遇到版本兼容性问题,需要确保所有依赖的版本与Spring Boot 3兼容。比如,Spring Boot 3可能要求Spring Cloud版本为2022.x以上,而对应的Micrometer Tracing版本也需要匹配。 可能还需要示例代码,展示如何配置KafkaTemplate和ListenerContainer来加入追踪的上下文。比如使用Brave的TracingProducerInterceptor和TracingConsumerInterceptor。 最后,提醒用户注意依赖管理,以及是否需要集成Zipkin或Jaeger这样的分布式追踪系统来可视化结果。还要检查日志中是否有追踪ID,以确认配置是否生效。 总结下来,步骤应该是:1. 替换依赖为Micrometer Tracing和相关实现;2. 配置Kafka客户端拦截器;3. 确保追踪上下文在生产和消费端的传递;4. 可能集成外部追踪系统。需要一步步引导用户完成这些配置,并验证是否成功。</think>在 Spring Boot 3 中,链路追踪的解决方案已从 Spring Cloud Sleuth 迁移到 **Micrometer Tracing** 生态体系。以下是具体实现 Spring-Kafka 链路追踪的步骤: --- ### 一、核心原理 Spring Boot 3 使用 Micrometer Tracing(支持 Brave/OpenTelemetry)实现分布式追踪,通过以下机制与 Kafka 集成: ``` 生产者端:将 Tracing 信息注入 Kafka Headers 消费者端:从 Kafka Headers 提取 Tracing 上下文 ``` --- ### 二、实现步骤 #### 1. 添加依赖(需注意版本兼容) ```xml <!-- Micrometer Tracing 核心 --> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-tracing</artifactId> </dependency> <!-- Brave 实现(或选 OpenTelemetry) --> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-tracing-bridge-brave</artifactId> </dependency> <!-- Kafka 集成支持 --> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-tracing-integration-kafka</artifactId> </dependency> ``` #### 2. 配置 Kafka 客户端 ```java @Configuration public class KafkaTracingConfig { // 生产者拦截器配置 @Bean public ProducerFactory<String, String> kafkaProducerFactory( KafkaProperties properties, Tracing tracing // 自动注入的 Tracing 实例 ) { Map<String, Object> configs = properties.buildProducerProperties(); configs.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, BraveKafkaProducerInterceptor.class.getName()); return new DefaultKafkaProducerFactory<>(configs); } // 消费者拦截器配置 @Bean public ConsumerFactory<String, String> kafkaConsumerFactory( KafkaProperties properties, Tracing tracing ) { Map<String, Object> configs = properties.buildConsumerProperties(); configs.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG, BraveKafkaConsumerInterceptor.class.getName()); return new DefaultKafkaConsumerFactory<>(configs); } } ``` #### 3. 发送消息(自动注入 TraceId) ```java @Autowired private KafkaTemplate<String, String> kafkaTemplate; public void sendMessage(String topic, String message) { kafkaTemplate.send(topic, message); // 自动携带 Tracing headers } ``` #### 4. 消费端自动处理 ```java @KafkaListener(topics = "my-topic") public void listen(String message, @Header(KafkaHeaders.HEADERS) Headers headers) { // 自动解析 Headers 中的 Trace 上下文 } ``` --- ### 三、验证配置 检查日志格式应包含: ```log 2023-01-01T12:00:00.000Z INFO [appname,traceId=5b2a3c4d,spanId=d7e8f9a0] ... ``` --- ### 四、与外部系统集成(可选) 若要连接 Zipkin/Jaeger: ```yaml management: tracing: sampling: probability: 1.0 # 采样率 service: name: my-service zipkin: endpoint: http://localhost:9411/api/v2/spans ``` --- ### 五、注意事项 1. **版本兼容性**:需确保 Spring Boot 3.x + Spring Cloud 2022.x(如使用 Spring Cloud Bus) 2. **Header 传播**:Kafka Headers 的 key 默认使用 `traceparent`(符合 W3C 标准) 3. **手动传播**:如需自定义可通过 `KafkaTelemetry` 工具类操作 相比 Spring Boot 2 的 Sleuth 方案,新方案具有更好的标准化(支持 OpenTelemetry)和更细粒度的观测指标集成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

humannoid

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值