学习笔记——机器人微分运动学(1)
雅可比矩阵(Jacobian matrix)
假设某函数从 f:Rn→Rmf:R^n\to R^mf:Rn→Rm ,从 x∈Rnx\in R^nx∈Rn 映射到 向量 f(x)∈Rmf(x)\in R^mf(x)∈Rm , 其雅可比矩阵是 m×nm\times nm×n 的矩阵,换句话讲也就是从 RnR^nRn 到 RmR^mRm 的线性映射,其重要意义在于它表现了一个多变数向量函数的最佳线性逼近。因此,雅可比矩阵类似于单变数函数的导数。
此函数fff的雅可比矩阵JJJ为 m×nm×nm×n 的矩阵,一般由以下方式定义:
J=[∂f∂x1⋯∂f∂xn]=[∂f1∂x1⋯∂f1∂xn⋮⋱⋮∂fm∂x1⋯∂fm∂xn] \left.\mathbf{J}=\left[\begin{array}{ccc}{
{\frac{\partial\mathbf{f}}{\partial x_{1}}}}&{\cdots}&{
{\frac{\partial\mathbf{f}}{\partial x_{n}}}}\end{array}\right.\right]=\left[\begin{array}{ccc}{
{\frac{\partial f_{1}}{\partial x_{1}}}}&{\cdots}&{
{\frac{\partial f_{1}}{\partial x_{n}}}}\\{\vdots}&{\ddots}&{\vdots}\\{
{\frac{\partial f_{m}}{\partial x_{1}}}}&{\cdots}&{
{\frac{\partial f_{m}}{\partial x_{n}}}}\end{array}\right] J=[∂x1∂f⋯∂xn∂f]=
∂x1∂f1⋮∂x1∂fm⋯⋱⋯∂xn∂f1⋮∂xn∂fm
于是,矩阵的某一分量可表示为:
Jij=∂fi∂xj \mathbf{J}_{ij}={\frac{\partial f_{i}}{\partial x_{j}}} Jij=∂xj∂fi
示例:
对于F:R3→R4\mathbf{F}:\mathbb{R}^3\to\mathbb{R}^4F:R3→R4其各分量如下:
{ y1=x1y2=5x3y3=4x22−2x3y4=x3sinx1 \begin{cases}y_1&=x_1\\y_2&=5x_3\\y_3&=4x_2^2-2x_3\\y_4&=x_3\sin x_1\end{cases} ⎩ ⎨ ⎧y1y2y