学习笔记——机器人微分运动学(1)

学习笔记——机器人微分运动学(1)

雅可比矩阵(Jacobian matrix)

  • 雅可比矩阵定义

假设某函数从 f:Rn→Rmf:R^n\to R^mf:RnRm ,从 x∈Rnx\in R^nxRn 映射到 向量 f(x)∈Rmf(x)\in R^mf(x)Rm , 其雅可比矩阵是 m×nm\times nm×n 的矩阵,换句话讲也就是从 RnR^nRnRmR^mRm​​ 的线性映射,其重要意义在于它表现了一个多变数向量函数的最佳线性逼近。因此,雅可比矩阵类似于单变数函数的导数。

此函数fff的雅可比矩阵JJJm×nm×nm×n 的矩阵,一般由以下方式定义:
J=[∂f∂x1⋯∂f∂xn]=[∂f1∂x1⋯∂f1∂xn⋮⋱⋮∂fm∂x1⋯∂fm∂xn] \left.\mathbf{J}=\left[\begin{array}{ccc}{ {\frac{\partial\mathbf{f}}{\partial x_{1}}}}&{\cdots}&{ {\frac{\partial\mathbf{f}}{\partial x_{n}}}}\end{array}\right.\right]=\left[\begin{array}{ccc}{ {\frac{\partial f_{1}}{\partial x_{1}}}}&{\cdots}&{ {\frac{\partial f_{1}}{\partial x_{n}}}}\\{\vdots}&{\ddots}&{\vdots}\\{ {\frac{\partial f_{m}}{\partial x_{1}}}}&{\cdots}&{ {\frac{\partial f_{m}}{\partial x_{n}}}}\end{array}\right] J=[x1fxnf]= x1f1x1fmxnf1xnfm
于是,矩阵的某一分量可表示为:
Jij=∂fi∂xj \mathbf{J}_{ij}={\frac{\partial f_{i}}{\partial x_{j}}} Jij=xjfi
示例:

对于F:R3→R4\mathbf{F}:\mathbb{R}^3\to\mathbb{R}^4F:R3R4其各分量如下:
{ y1=x1y2=5x3y3=4x22−2x3y4=x3sin⁡x1 \begin{cases}y_1&=x_1\\y_2&=5x_3\\y_3&=4x_2^2-2x_3\\y_4&=x_3\sin x_1\end{cases} y1y2y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值