给你一个二叉树的根节点 root
,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:root = [2,1,3] 输出:true
示例 2:
输入:root = [5,1,4,null,null,3,6] 输出:false 解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
- 树中节点数目范围在
[1, 104]
内 -231 <= Node.val <= 231 - 1
class Solution {
public:
TreeNode* pre = nullptr;
bool dfs(TreeNode* root){
if(!root) return true;
bool left = dfs(root->left);
if(pre && pre->val >= root->val) return false;
pre = root;
bool right = dfs(root->right);
return left && right;
}
bool isValidBST(TreeNode* root) {
//dfs
//利用中序,前一个结点比后一个结点小,来判断
return dfs(root);
}
};
//迭代
class Solution {
public:
bool isValidBST(TreeNode* root) {
//中序遍历
stack<TreeNode*>st;
TreeNode* pre = nullptr;
TreeNode* cur = root;
//if(!root) return true;
while(cur || !st.empty()){
if(cur){
st.push(cur);
cur = cur->left;
}
else{
cur = st.top();
st.pop();
if(pre && pre->val >= cur->val) return false;
pre = cur;
cur = cur->right;
}
}
return true;
}
};