- 博客(29)
- 收藏
- 关注
原创 基于MATLAB的图像色彩识别项目,彩色图像矩阵识别
本项目运用MATLAB实现了识别图像中方块颜色的核心目标,且准确率较高。在处理的30幅图像中,28幅颜色识别准确率达100%,总体准确率为28/30 = 93.3%。在圆形检测以及校正旋转或投影图像方向方面,开发的函数成功率均为100%。通过此次项目,积累了丰富的MATLAB图像处理经验,同时也认识到在处理真实图像时还需进一步优化算法,以应对更复杂的图像场景。需要代码可以联系。
2025-05-05 20:42:25
684
原创 C 语言库函数开发中必知的运算符魔法:|、||、&、&&、^、~、! 的实战指南
掌握这些运算符的关键在于理解它们在内存层面的操作机制。分析标准库函数实现(如string.hmath.h研究嵌入式系统寄存器操作代码实践位运算优化算法(如快速哈希、图像掩码处理)通过合理运用这些运算符,不仅能提升代码效率,还能编写出更健壮的库函数。记住:在C语言中,正确的位操作能让程序如同精密机械般高效运转,而恰当的逻辑控制则是保证系统稳定的基石。《C语言深度解剖》位运算章节GCC编译器优化手册中的位操作技巧Linux内核中的位掩码宏实现(如。
2025-04-01 22:44:01
404
原创 STM32蜂鸣器播放音乐
通过7个按键控制蜂鸣器发声,按键对应不同的音符。每个按键对应一个音符(Do, Re, Mi, Fa, Sol, La, Si),按下按键时蜂鸣器播放对应音符的声音。利用PWM技术控制蜂鸣器发声频率,实现不同音符的效果。按键松开时蜂鸣器停止发声,防止连续触发。
2025-03-25 20:08:20
848
原创 STM32实现智能温控系统(暖手宝):PID 算法 + DS18B20+OLED 显示,[学习 PID 优质项目]
本文基于 STM32F103C8T6 单片机,设计了一个高精度温度控制系统。通过DS18B20 采集温度,采用位置型 PID 算法控制 PWM 输出驱动 MOS 管加热Pi膜,配合 OLED 实时显示温度数据。系统可稳定将 PI 膜加热至 40℃,适用于实验室加热装置、小型温控设备等场景(可以换加热模块)。
2025-03-25 19:49:36
814
4
原创 深入探究PyTorch模型参数输出:从基础方法到torchinfo库的高效应用
在PyTorch中,通过原生的和等方法,我们能够灵活地输出和访问模型参数。而torchinfo库则为我们提供了更直观、全面的模型概览和参数分析功能。合理运用这些方法和工具,无论是在模型的调试、性能优化,还是在理解模型行为等方面,都能帮助我们更高效地进行深度学习模型的开发与研究。希望本文介绍的内容能为广大开发者在PyTorch模型参数处理上提供有益的参考和帮助。
2025-02-27 16:41:53
649
原创 【论文阅读】DUCK-Net paper with code 上息肉分割效果不错的代码
虽然使用多个小卷积核通常是一种有效的方法,但过多的小卷积核可能会导致网络在训练过程中难以收敛,并且难以准确地学习到需要关注的特征。因此,我们通过组合使用1、2和3个残差块,来模拟5×5、9×9和13×13的内核大小,从而在捕捉细节和保证训练效率之间取得平衡。:https://github.com/SJTUzhou/DUCK-Net-3D-Pytorch(该仓库提供了纯PyTorch实现的代码,并且支持2D和3D图像的处理)此外,实验还包括交叉测试和消融实验等内容,以全面评估模型的性能和各个组件的有效性。
2025-02-17 16:28:35
749
3
原创 【论文阅读】BCNet Boundary Constraint Network With Cross Layer Feature Integration for Polyp Segmentation
因此,通过在浅层的特征图上生成息肉掩模,并以深层提取的位置信息作为双边指导,可以有效增强息肉边界特征,同时抑制非息肉边界特征。:这是一种新型的特征提取模块,它的主要作用是增大特征图的感受野。在BCNet中,RFB能够突出图像中锐利的边缘,同时抑制相对轻微的边缘,从而更好地服务于息肉分割任务。然后,将上分支的特征进行reverse操作后,与上采样后的深层位置信息进行点乘操作,得到。:在三个公开的数据集上进行的实验结果表明,所提出的BCNet在分割的有效性和泛化能力方面,均优于现有的七种最先进的竞争方法。
2025-02-17 16:16:40
1168
1
原创 基于 STM32F767 的 4 位数码管显示与数字递减设计
开始判断,如果当前位为 0,则将其设置为 9,并继续判断前一位是否为 0,依次类推,直到找到不为 0 的位并将其递减 1,从而实现数字的逐个递减功能。函数中,分别使能 GPIOA 和 GPIOB 的时钟,然后将 GPIOA 的 0 - 7 引脚配置为推挽输出模式(将 GPIOB 的 4 - 7 引脚也配置为相同的推挽输出模式,用于位选控制。语句选择对应的位选引脚并将其设置为低电平,从而选中要显示的数码管位。大于 3 时,重新将其设置为 0,实现 4 位数码管的循环扫描显示。变量来控制数字递减的频率,当。
2024-12-20 15:57:00
1099
原创 STM32F767控制7位数码管0-9-a-f显示
其电源部分(一般为 5V 供电,具体取决于数码管规格要求,这里假设开发板能提供合适的电源来驱动数码管)为数码管提供必要的电能,以点亮内部的发光二极管段。函数中,涉及到对一些与时钟配置相关的内部引脚及寄存器的操作(虽然代码中没有直接体现出具体引脚操作,但底层硬件是通过这些来实现时钟源选择、分频等功能的),比如配置。开发板提供电源,开发板内部的电源电路会将输入的电源进行相应的转换和稳压等处理,为芯片以及连接的外部设备(如数码管)提供稳定合适的工作电压,例如为。相关电路连接的引脚等,这些引脚按照设定的参数(如。
2024-12-20 15:53:57
1406
原创 基于 Luna16 数据集的肺部结节处理与模型训练实战
Luna 数据集主要来源于肺部的 CT 扫描影像,包含了大量的肺部病例数据,这些数据对于肺部结节的研究至关重要。数据集中的每一个病例都包含了详细的肺部 CT 图像信息,并且对于存在的肺部结节,还提供了精确的标注信息,如结节的位置、大小、形状等,这些标注信息为我们进行模型训练提供了准确的目标参考,使得我们能够开发出针对肺部结节检测和分割的有效模型,从而辅助医生更准确地诊断肺部疾病。
2024-12-15 21:01:04
3102
2
原创 Arduino 课程设计小项目( 卧推器材的失速检测与保护装置设计)
本次基于Arduino的失速检测与保护装置设计成功实现了预期功能,通过硬件和软件的协同工作,有效地提高了系统的安全性和可靠性。在未来的改进中,可以进一步优化失速判断算法,提高检测的准确性和灵敏度,同时可以考虑增加更多的传感器,如压力传感器等,以实现更全面的状态监测和保护功能。通过这个课程小设计,不仅加深了对Arduino开发和传感器应用的理解,也为解决实际工程问题提供了一个可行的思路和方法。
2024-12-13 22:30:50
1036
原创 STM32 出租车计价器系统设计(一) 江科大源码改写
驱动步进电机模拟车轮旋转,并实现调速功能。设置车轮周长和单价,检测车轮转速和运转时间。计算并显示行驶里程和价格。
2024-12-07 20:14:29
1417
原创 深入了解 TensorBoard:提升你的机器学习模型训练体验
TensorBoard 是 TensorFlow 提供的一个可视化工具,旨在帮助开发者监控和分析机器学习模型的训练过程。通过可视化各种指标,TensorBoard 能够让你更直观地理解模型的表现,从而做出更明智的决策。TensorBoard 允许你记录自定义的性能指标,如精确率、召回率、F1 分数等。这些指标可以帮助你更全面地评估模型的性能。应用示例不平衡数据集: 在处理不平衡数据集(如欺诈检测)时,记录精确率和召回率。通过 TensorBoard 可视化这些指标,可以帮助你更全面地评估模型的性能。
2024-12-05 16:10:12
1349
原创 怎么在原本的模型上,加入模块 形成自己的创新点 以Unet为例
当你已然能够运行部分主流基础模型,抑或成功觅得自己的基线模型(baseline)时,若想在原有模型基础上巧妙融入模块以铸就独特的创新点,那么学术小论文的大门已然向你敞开。本文将以经典的UNet。
2024-12-04 09:40:16
2732
原创 linux 中 unzip 报错
命令格式:7za {a|d|l|e|u|x} 压缩包文件名 {文件列表或目录可选}其实是当前的unzip版本不支持4G以上的压缩包。以为是网络上传不稳定导致。
2024-12-02 20:06:02
695
1
原创 IMX6ULL开发板GPIO中断实验全解析
在头文件中,我们需要增加一些重要的定义和枚举类型,以方便对GPIO中断进行管理和配置。例如,定义GPIO输入信号中断触发类型的枚举类型,其成员包括(无中断)、(低电平中断)、(高电平中断)、(上升沿中断)、(下降沿中断)、(上升下降沿中断)等模式。这些枚举值使得我们在代码中能够清晰、直观地指定中断触发类型,提高了代码的可读性和可维护性。
2024-12-01 12:54:47
1152
原创 深度学习 超参数调整策略
区分两者的关键在于是否通过数据进行调整。模型参数通常是由数据驱动调整的,而超参数则不需要数据驱动,是在训练前或训练中人为调整的参数。例如,卷积核的具体核参数是模型参数,由数据驱动调整,而学习率则是人为调整的超参数。需要注意的是,卷积核的数量和尺寸通常也被视为超参数,这与卷积核的具体参数不同。超参数调整是深度学习模型训练中的一项重要任务,通过合理的超参数调优,模型性能可以大幅提升。虽然手动调优超参数需要耗费大量的时间和精力,但对于理解模型的内部机制和优化策略大有裨益。
2024-11-18 16:13:13
1415
原创 自己整理的模型训练记录模板 搭配log和tensorborad
因为要训练的次数太多,所以简单做了一个markdown来记录平时的数据,知道每次修改了什,对应效果是什么,存在哪些问题, 下次怎么样修改等等。
2024-11-15 15:11:40
673
原创 Python 轻松比较两个文件夹,找出多出的文件
在处理数据集时,我们经常会遇到两个文件夹中文件数目不一致的情况。这可能是由于某些文件被遗漏或者错误地删除导致的。为了快速找出哪些文件是多出来的,我们可以使用Python中的集合操作来实现。函数获取两个文件夹中的所有文件名,并将其转换为集合。然后,我们使用集合的差集操作。这样,我们就可以快速地找出两个文件夹中多出的文件,并进行相应的处理。接下来,我们定义另一个函数。在这个函数中,我们首先使用。首先,我们定义一个函数。
2024-11-14 13:17:27
364
原创 LiTS 数据集预处理(三) npy_to_png
继续上次要完成的第二个目标:Numpy格式转换至PNG在上次的工作LiTS 数据集预处理(一) 对数据切片和LiTS 数据集预处理(二) 肝脏肿瘤分离,我们完成了对CT图像进行了切片处理,并生成了相应的切片后的标签(Label)。需要注意的是,CT图像和标签之间是一一对应的,数量自然也是相同的
2024-11-14 07:45:00
1223
原创 Python 文件路径读取详解
使用r''可以避免转义字符的问题。在路径中使用正斜杠可以提高可移植性。使用os.path模块可以更方便地处理文件路径。
2024-11-13 08:46:06
1526
原创 LiTS 数据集预处理(二) 肝脏肿瘤图像分割
通过以上步骤,我们成功地将肝脏和肿瘤区域进行了分离,并为后续的分析和模型训练做好了准备。接下来,我们可以利用这些处理后的数据进行肝脏肿瘤的分割任务。
2024-11-12 18:54:27
773
原创 LiTS 数据集预处理(一) 肝脏肿瘤图像分割
最近在学习Unet等家族做肝脏肿瘤分割,肝脏肿瘤公开数据集有出名的(全球人都在研究的)LITS数据集,从网上下载下来的时候,格式是nii文件。因为我是学习的2D模型训练,所以我需要对nii格式文件进行切片,经过研究学习网上几份代码,发现其中还有有点讲究的,所以想写篇文章分享介绍一下。如果有对训练更有利的预处理方法,欢迎到群里或者评论区讨论)
2024-11-12 16:53:07
3896
3
原创 Linux下终端输出当前文件夹下文件数量
用服务器进行训练模型,处理数据集时候经常和 linux 打交道,有些命令太长可能记不住,所以在这里分享一下,也加深一下记忆。
2024-11-11 23:53:57
500
1
原创 医学图像分割综述(肝脏等器官与肿瘤的分割)——组会必备
Image semantic segmentation aims to achieve pixel classification of an image. For this goal, researchers proposed the encoder-decoder structure that is one of the most popular end-to-end architectures,与3D-UNet
2024-11-09 21:55:17
1542
原创 os.mkdir(outputImg_path) FileNotFoundError: [WinError 3] 系统找不到指定的路径。
在输出数据集时候,会经常遇到各种文件格式转换,在分类文件夹存储时,使用os.mkdir创建文件夹目录,遇到找不到指定路径的问题。
2024-11-04 20:59:29
455
原创 nohup:实现训练模型后台不挂断运行,解放电脑
用服务器做pytorch训练时,关掉了Xshell或者VScode,训练也就断了。要么一直挂着前台,学习(游戏)也不方便。所以研究了一下linux的后台运行,简单介绍一下,同时方便自查。
2024-10-31 21:23:51
1183
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人