1.用栈实现队列
题目来源
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
实现 MyQueue 类:
void push(int x) 将元素 x 推到队列的末尾
int pop() 从队列的开头移除并返回元素
int peek() 返回队列开头的元素
boolean empty() 如果队列为空,返回 true ;否则,返回 false
说明:
你 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
示例 1:
输入:
[“MyQueue”, “push”, “push”, “peek”, “pop”, “empty”]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]
class MyQueue {
public:
stack<int> in;
stack<int> put;
MyQueue() {
}
void push(int x) {
in.push(x);
}
int pop() {
int ret = peek();
put.pop();
return ret;
}
int peek() {
if (put.empty()){
while (!in.empty()){
put.push(in.top());
in.pop();
}
}
return put.top();
}
bool empty() {
return in.empty() && put.empty();
}
};
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue* obj = new MyQueue();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->peek();
* bool param_4 = obj->empty();
*/
1.面试题 08.05. 递归乘法
题目来源
递归乘法。 写一个递归函数,不使用 * 运算符, 实现两个正整数的相乘。可以使用加号、减号、位移,但要吝啬一些。
示例1:
输入:A = 1, B = 10
输出:10
class Solution {
public:
long long dfs(long long A, long long B){
// 计算有多少层使用加法实现B^n,n为层数,如果都是偶数则直接计算
// 如果是奇数则将其拆分为一个偶数加一个要乘的数
if (A == 0){
return B >> 1;
}
else if (A % 2 && A != 1){
return dfs(A / 2, B + B) + B;
}
else return dfs(A / 2, B + B);
}
int multiply(int A, int B) {
return dfs(A, B);
}
};