自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 计算机视觉技术剖析:轮廓检测、模板匹配及特征点匹配

本文系统介绍了计算机视觉中的三大基础技术:轮廓检测、模板匹配和特征点匹配。轮廓检测通过边缘跟踪和凸包分析实现物体形状提取,广泛应用于工业检测和医学图像分析;模板匹配基于灰度相似度进行区域匹配,适用于字符识别等场景;特征点匹配利用SIFT、ORB等算法实现高精度图像配准,支持三维重建等复杂任务。文章对比了三者的技术特点,指出深度学习与传统技术融合、多模态数据协同处理是未来发展趋势,同时强调数据质量、算法可解释性和实时性优化等关键挑战。这些基础技术的深入理解和合理运用,对提升计算机视觉系统性能具有重要意义。

2025-07-24 22:47:28 595

原创 图像预处理:从像素操作到空间变换,手把手教你搞定 CV 基础流程

图像预处理是计算机视觉和图像处理的关键环节,涵盖图像表示、存储、变换、增强和滤波等技术。通过几何变换和仿射变换调整图像空间结构,运用对比度调整、直方图均衡化等增强技术提升图像质量。线性滤波(均值、高斯滤波)和非线性滤波(中值、双边滤波)在去噪与保留边缘间取得平衡。这些技术在安防监控、医学影像、自动驾驶等领域广泛应用。

2025-07-23 17:33:39 578

原创 图像基础:从像素到 OpenCV 的入门指南

本文介绍了图像处理的基础知识和 OpenCV-Python 的核心操作

2025-07-22 23:30:31 1015

原创 从 0 开始掌握 Python 数据可视化神器“Matplotlib”

本文系统介绍了Python数据可视化神器Matplotlib的使用方法。从基础概念(Figure、Axes等核心组件)到环境配置(解决中文乱码问题),通过正弦曲线案例演示完整绘图流程。重点讲解5种常用图表(折线图、柱状图、直方图、散点图、饼图)的绘制技巧和定制方法,并分享子图布局、保存高清图片等实用技能。文章强调Matplotlib作为Python可视化"基石"的价值,建议读者先掌握基础功能再逐步优化样式,同时推荐了3D绘图、交互式图表等进阶方向。

2025-07-22 20:56:16 1008

原创 深入解析 Pandas:Python 数据分析的强大工具

本文全面介绍了Python数据分析库Pandas的核心功能与应用。Pandas提供了Series和DataFrame两大核心数据结构,支持数据读取、清洗、转换、分组聚合等操作。文章详细讲解了如何使用Pandas处理CSV/Excel数据、处理缺失值与重复值、进行数据筛选与合并、创建数据透视表以及时间序列分析。Pandas与NumPy、Matplotlib等库紧密结合,构建了强大的数据科学生态系统,是金融、科研、商业等领域不可或缺的分析工具。通过掌握Pandas,数据分析师能够高效处理结构化数据,挖掘数据价值

2025-07-22 20:11:22 798

原创 NumPy:Python 科学计算的基石

NumPy是Python科学计算的核心库,为高效数值运算提供多维数组对象ndarray及相关功能。其核心优势包括:1)内存连续的ndarray结构支持矢量化运算,性能远超Python原生列表;2)提供丰富的数学函数、线性代数、随机数生成等功能;3)具备广播机制实现不同形状数组的运算。NumPy广泛应用于科学计算、数据分析、机器学习等领域,是SciPy、Pandas、scikit-learn等库的基础。随着计算需求增长,NumPy持续优化性能,未来将更深度集成AI、大数据等技术,并增强易用性。

2025-07-22 19:57:57 643

原创 正则表达式:文本处理的强大工具

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。re模块使Python拥有正则表达式功能。

2025-07-22 17:41:36 1067

原创 关于模块化编程概念(模块、包、导入)、常见系统模块总结及第三方模块管理

本文系统介绍了Python模块化编程的核心概念与实践方法。主要内容包括:1)模块与包的概念解析,模块是功能单元(.py文件),包是模块的目录集合;2)多种模块导入方式及适用场景;3)常用内置模块(math/random/datetime等)的功能示例;4)第三方模块管理:pip工具使用、虚拟环境创建、依赖管理文件requirements.txt;5)最佳实践:合理划分功能、命名规范、避免循环导入、文档编写与单元测试。文章强调模块化编程对代码复用、维护性和扩展性的重要性,为Python开发者提供了全面的模块化

2025-07-19 12:57:03 811

原创 迭代器与生成器剖析:机制差异、底层逻辑及场景实现全解析

Python迭代器与生成器是处理数据的高效工具。迭代器通过实现__iter__()和__next__()方法实现数据遍历,适合处理集合类数据;生成器则通过yield关键字按需生成数据,节省内存。二者主要区别在于:迭代器侧重数据遍历,生成器适合数据生成;迭代器需保存整个序列状态,生成器则动态产生值;处理大数据时生成器性能更优。实际应用中,应根据需求选择合适工具——遍历现有数据用迭代器,生成大量或无限序列用生成器。掌握二者特性可显著提升Python代码效率。

2025-07-17 17:32:08 694

原创 Python 面向对象编程范式中的类与对象之解析

本文介绍了Python面向对象编程中类和对象的基本概念与应用。类作为对象的蓝图,通过class关键字定义,包含属性和方法;对象是类的实例化结果,具有独立的属性值。属性分为实例属性(对象特有)、类属性(类共享)和私有属性(通过__前缀实现封装)。方法包括实例方法(操作对象)、类方法(@classmethod修饰)和静态方法(@staticmethod修饰)。合理运用这些特性可以构建结构清晰、功能强大的程序,提升代码的可维护性和安全性。

2025-07-16 23:40:17 1116

原创 详解 Python 递归函数及装饰器的应用与原理

本文介绍了Python中的递归函数和装饰器函数两种重要编程工具。递归函数通过自我调用来解决问题,适用于阶乘计算、树形结构遍历等场景,但需注意递归深度限制;装饰器函数则在不修改原函数代码的前提下扩展功能,常用于日志记录、性能计时、权限验证等场景,具有较高的灵活性和复用性。文章通过具体代码示例详细说明了两种函数的实现原理、应用方法及注意事项,帮助读者深入理解并掌握这些重要的Python编程技巧。

2025-07-15 19:32:09 746

原创 关于python中函数的位置传参、关键词传参及其可变性和解包操作

Python函数参数传递机制解析:本文详细介绍了Python函数中位置传参和关键字传参的特点与使用场景,分析了参数可变性对函数调用的影响,并演示了序列解包和字典解包的操作方法。位置传参简单直观但依赖顺序,关键字传参提升可读性且不受位置限制。文章还强调了可变对象作为参数时可能产生的副作用,以及如何通过解包操作简化函数调用。掌握这些核心概念有助于编写更加高效、灵活的Python代码。

2025-07-14 19:16:19 1219

原创 关于 Python 推导式及常见语句、内置函数的梳理

本文系统介绍了Python编程中的核心特性与工具。首先详细讲解了四种推导式(列表、字典、集合、生成器)的语法和使用场景,展示了如何用简洁方式创建数据结构。然后总结了常见语句类型,包括赋值、条件、循环、函数定义等基本语法结构。最后列举了Python丰富的内置函数,涵盖数据类型转换、数学运算、序列操作等功能。这些特性共同构成了Python高效编程的基础,掌握它们能显著提升代码质量和开发效率。文章通过大量示例代码帮助理解,建议通过实践加深对这些工具的理解和应用。

2025-07-11 23:00:12 956

原创 关于复合类型中序列类型、映射类型及集合类型的归纳

Python复合类型主要包括序列类型(字符串、列表、元组)、映射类型(字典)和集合类型(set、frozenset)。序列类型有序存储数据,支持索引和切片操作;字典通过键值对高效存储和访问数据;集合类型处理唯一元素,支持集合运算。每种类型各有特点:列表可变,元组不可变;字典查找高效;集合自动去重。实际开发中应根据需求选择合适类型,如需要顺序访问用序列,快速查找用字典,去重用集合。掌握这些复合类型的特点和操作方法,能显著提升Python编程效率和代码质量。

2025-07-10 20:45:07 960

原创 Python 基础变量类型里的字符串与数字类型

本文详细介绍了Python编程中两种基础变量类型——字符串和数字。字符串部分涵盖了创建方式、转义字符、格式化输出、拼接与切片操作,以及常用内置函数;数字类型讲解了整数、浮点数、复数及布尔值的特性、运算规则和不同进制表示。文章还阐述了字符串与数字间的相互转换方法,强调掌握这些基础类型对提高编程效率的重要性,为后续学习更复杂的数据结构奠定基础。

2025-07-09 15:24:55 695

原创 conda 环境配置及 IDE(vsCode、PyCharm、Jupyter)开发环境配置

本文介绍了Python开发环境配置指南,涵盖Anaconda、VSCode、PyCharm和Jupyter的安装与配置方法。主要内容包括: Anaconda环境管理(创建/切换虚拟环境、包管理、镜像源配置) VSCode配置(Python扩展安装、解释器选择、代码运行) PyCharm使用(项目创建、解释器配置、Jupyter插件安装) Jupyter Notebook配置(安装、端口/工作目录设置) 文章提供了各开发环境的详细配置步骤和常用命令,帮助用户解决Python版本冲突问题,并优化开发体验。

2025-07-08 18:44:44 902 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除