目录
概念
若连续性随机变量X的概率密度为
其中 为平均数,
为标准差,
为常数,则称X服从参数为
的正态分布(Normal distribution)或高斯(Gauss)分布,记为
.
X的分布函数为
1.正态分布的图形
性质
- 曲线关于
对称,这表明对于任意
有
.
- 当
时,取到最大值
.
离
越远,
的值越小,表明对于同样长度的区间,当区间离
越远,X落在这个区间上的概率越小.
- 在
处曲线有拐点. 曲线以
轴为渐近线.
- 固定
,改变
的值,正态分布图形沿着
轴平移,而不改变其形状. 正态分布的概率密度曲线
的位置完全由参数
所确定,
称为位置参数.
- 固定
,改变
的值,由于最大值
,可知当
越小时,图形变得越尖,因而X落在
附近的概率越大.
标准正态分布
当 时称随机变量X服从标准正态分布.
标准正态分布的概率密度:
标准正态分布的分布函数:
易知
"3σ"法则
尽管正态变量的取值范围是 ,但它的值落在
几乎是肯定的事.
参考资料
- 《概率论与数理统计》第四版, 盛聚, 谢式千, 潘承毅.