面试实录:赵大宝的互联网大厂音视频AI系统Java技术面试全纪实

面试实录:赵大宝的互联网大厂音视频AI系统Java技术面试全纪实

场景设定

某大型互联网公司,业务涉及音视频直播与AI内容审核。赵大宝前来应聘Java开发岗位,面试官以实际业务为线索,考察技术体系完整性。


第一轮:核心业务基础与系统设计

面试官:赵大宝,咱们公司有海量音视频内容上传,涉及内容审核与分发。请你说说如何基于Spring Boot设计一个基础的音视频上传和存储服务?

赵大宝:用Spring Boot写API,视频用MultipartFile上传,存本地或者OSS,然后数据库存下路径……

面试官:回答不错,能说说你如何保证接口的高可用和高并发处理吗?

赵大宝:加个线程池啥的,多实例部署,Redis缓存一下……(其实具体怎么做我也不清楚,反正就大概这样吧)

面试官:说得对,高可用要靠多实例、负载均衡。那音视频上传后要触发AI内容审核,这个流程你打算怎么设计?

赵大宝:用消息队列呗,Kafka、RabbitMQ都行,传个消息给审核服务……

面试官:棒!那你熟悉RESTful API设计和Swagger文档生成吗?

赵大宝:用Spring MVC写接口,Swagger注解一加就出文档了。


第二轮:分布式与微服务、缓存与消息队列

面试官:假如内容审核和分发都是独立微服务,你如何用Spring Cloud实现服务发现和调用?

赵大宝:注册到Eureka啥的,用Feign调用……

面试官:很好。那内容分发高并发,怎么减轻数据库压力?

赵大宝:加Redis缓存,热点数据放缓存里。

面试官:那如果缓存和数据库数据不一致怎么办?

赵大宝:呃……可以定时刷新缓存,或者用消息通知刷新……(有点懵)

面试官:思路对,细节还得加强。内容过审后推送给用户,你会用什么消息队列?

赵大宝:Kafka吧,性能高。

面试官:那你了解如何监控微服务健康吗?

赵大宝:用Spring Boot Actuator,配个Prometheus、Grafana……


第三轮:AI集成、日志安全、复杂业务问题

面试官:AI审核服务需要集成外部AI模型API,你如何保证调用安全和高可用?

赵大宝:加个重试机制,失败就重试,JWT鉴权……(细节不太懂)

面试官:还不错。那系统日志和敏感数据安全怎么做?

赵大宝:用Logback,敏感数据用脱敏处理。

面试官:AI审核结果有时会误判,你怎么优化?

赵大宝:可以人工复核,或者AI再训……(不是很清楚)

面试官:最后,如果要实现音视频内容的语义检索和向量化,Java有哪些开源方案?

赵大宝:呃,有Spring AI、Milvus啥的……(名字会,细节不会)

面试官:好,今天先这样,回去等通知吧。


业务场景与技术点详细解析

1. 音视频上传与存储

  • Spring Boot 提供REST API,前端通过MultipartFile上传文件。
  • 存储方案:本地磁盘、分布式文件系统(FastDFS)、云存储(OSS、COS、S3)。
  • 文件元数据(路径、大小、类型)入库(MySQL/PostgreSQL)。

2. 接口高可用与高并发

  • 多实例部署+负载均衡(Nginx、K8s Ingress)。
  • 线程池异步处理上传、转码等耗时任务。
  • Redis缓存热点内容,提升读性能。

3. 消息队列解耦业务

  • 上传后通过Kafka/RabbitMQ等队列通知AI服务进行内容审核,实现异步解耦、削峰填谷。
  • 消息幂等性与异常重试。

4. 微服务架构

  • Spring Cloud Eureka/Consul注册发现,微服务间用OpenFeign调用。
  • 配置中心(Spring Cloud Config)、熔断限流(Resilience4j)。

5. 缓存一致性

  • Redis缓存+数据库主存。
  • 常用策略:先更新数据库,再删除缓存(Cache Aside);或消息通知刷新缓存。
  • 定期一致性校验。

6. RESTful API与文档

  • 使用Spring MVC设计RESTful接口。
  • 通过Swagger/OpenAPI自动生成API文档,便于前后端协作。

7. 监控与日志

  • Spring Boot Actuator暴露健康指标。
  • Prometheus+Grafana监控服务健康和性能。
  • 日志脱敏(Logback/Log4j2),敏感字段加密或模糊化。

8. AI集成与安全

  • 通过HTTP/gRPC调用AI服务,考虑超时、重试、降级。
  • 鉴权用JWT、OAuth2等标准协议。
  • AI误判可结合人工复核、持续模型训练。

9. 语义检索与向量化

  • Spring AI、Milvus等向量数据库支持文本/多模态检索。
  • OpenAI/Embedding模型生成向量,支持语义搜索。

写在最后

音视频与AI场景下,Java技术覆盖面广,面试官循序渐进考察架构与细节。小白可据解析部分自查学习,补足短板,打好基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值