面试实录:赵大宝的互联网大厂音视频AI系统Java技术面试全纪实
场景设定
某大型互联网公司,业务涉及音视频直播与AI内容审核。赵大宝前来应聘Java开发岗位,面试官以实际业务为线索,考察技术体系完整性。
第一轮:核心业务基础与系统设计
面试官:赵大宝,咱们公司有海量音视频内容上传,涉及内容审核与分发。请你说说如何基于Spring Boot设计一个基础的音视频上传和存储服务?
赵大宝:用Spring Boot写API,视频用MultipartFile上传,存本地或者OSS,然后数据库存下路径……
面试官:回答不错,能说说你如何保证接口的高可用和高并发处理吗?
赵大宝:加个线程池啥的,多实例部署,Redis缓存一下……(其实具体怎么做我也不清楚,反正就大概这样吧)
面试官:说得对,高可用要靠多实例、负载均衡。那音视频上传后要触发AI内容审核,这个流程你打算怎么设计?
赵大宝:用消息队列呗,Kafka、RabbitMQ都行,传个消息给审核服务……
面试官:棒!那你熟悉RESTful API设计和Swagger文档生成吗?
赵大宝:用Spring MVC写接口,Swagger注解一加就出文档了。
第二轮:分布式与微服务、缓存与消息队列
面试官:假如内容审核和分发都是独立微服务,你如何用Spring Cloud实现服务发现和调用?
赵大宝:注册到Eureka啥的,用Feign调用……
面试官:很好。那内容分发高并发,怎么减轻数据库压力?
赵大宝:加Redis缓存,热点数据放缓存里。
面试官:那如果缓存和数据库数据不一致怎么办?
赵大宝:呃……可以定时刷新缓存,或者用消息通知刷新……(有点懵)
面试官:思路对,细节还得加强。内容过审后推送给用户,你会用什么消息队列?
赵大宝:Kafka吧,性能高。
面试官:那你了解如何监控微服务健康吗?
赵大宝:用Spring Boot Actuator,配个Prometheus、Grafana……
第三轮:AI集成、日志安全、复杂业务问题
面试官:AI审核服务需要集成外部AI模型API,你如何保证调用安全和高可用?
赵大宝:加个重试机制,失败就重试,JWT鉴权……(细节不太懂)
面试官:还不错。那系统日志和敏感数据安全怎么做?
赵大宝:用Logback,敏感数据用脱敏处理。
面试官:AI审核结果有时会误判,你怎么优化?
赵大宝:可以人工复核,或者AI再训……(不是很清楚)
面试官:最后,如果要实现音视频内容的语义检索和向量化,Java有哪些开源方案?
赵大宝:呃,有Spring AI、Milvus啥的……(名字会,细节不会)
面试官:好,今天先这样,回去等通知吧。
业务场景与技术点详细解析
1. 音视频上传与存储
- Spring Boot 提供REST API,前端通过MultipartFile上传文件。
- 存储方案:本地磁盘、分布式文件系统(FastDFS)、云存储(OSS、COS、S3)。
- 文件元数据(路径、大小、类型)入库(MySQL/PostgreSQL)。
2. 接口高可用与高并发
- 多实例部署+负载均衡(Nginx、K8s Ingress)。
- 线程池异步处理上传、转码等耗时任务。
- Redis缓存热点内容,提升读性能。
3. 消息队列解耦业务
- 上传后通过Kafka/RabbitMQ等队列通知AI服务进行内容审核,实现异步解耦、削峰填谷。
- 消息幂等性与异常重试。
4. 微服务架构
- Spring Cloud Eureka/Consul注册发现,微服务间用OpenFeign调用。
- 配置中心(Spring Cloud Config)、熔断限流(Resilience4j)。
5. 缓存一致性
- Redis缓存+数据库主存。
- 常用策略:先更新数据库,再删除缓存(Cache Aside);或消息通知刷新缓存。
- 定期一致性校验。
6. RESTful API与文档
- 使用Spring MVC设计RESTful接口。
- 通过Swagger/OpenAPI自动生成API文档,便于前后端协作。
7. 监控与日志
- Spring Boot Actuator暴露健康指标。
- Prometheus+Grafana监控服务健康和性能。
- 日志脱敏(Logback/Log4j2),敏感字段加密或模糊化。
8. AI集成与安全
- 通过HTTP/gRPC调用AI服务,考虑超时、重试、降级。
- 鉴权用JWT、OAuth2等标准协议。
- AI误判可结合人工复核、持续模型训练。
9. 语义检索与向量化
- Spring AI、Milvus等向量数据库支持文本/多模态检索。
- OpenAI/Embedding模型生成向量,支持语义搜索。
写在最后
音视频与AI场景下,Java技术覆盖面广,面试官循序渐进考察架构与细节。小白可据解析部分自查学习,补足短板,打好基础。