目录
一、概述
索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
我们通过一个简单的案例来了解下索引的具体作用,如下所示的表结构及其数据:
假如我们要执行的SQL语句为 :
select * from user where age = 45;
1). 无索引情况

在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。
2). 有索引情况
如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。
此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。
备注: 这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并 不是索引的真实结构,索引的真实结构,后面会详细介绍。
二、索引特点
三、索引结构
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看MySQL中几个主要的存储引擎对于索引结构的支持情况。
注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。
四、索引结构分析
4.1. 二叉树
假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:1. 顺序插入时,会形成一个链表,查询性能大大降低。2. 大数据量情况下,层级较深,检索速度慢。
4.2. 红黑树
前面我们讲了如果使用二叉树作为索引结构的话将存在的问题,那么既然二叉树不行,我们是否可以选择红黑树,因为红黑树是一棵自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一棵平衡的二叉树,结构如下:
但是即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:大数据量情况下,层级较深,检索速度慢。
所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是 B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。
4.3. B-Tree
B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。以一颗最大度数(max-degree)为5(5阶)的B-Tree为例,那这个B树每个节点最多存储4个key,5个指针: 注:树的度数指的是一个节点的子节点个数。<