第十三章 索引的结构特点、分类及语法

目录

一、概述

二、索引特点

三、索引结构

四、索引结构分析

4.1. 二叉树

4.2. 红黑树

4.3. B-Tree

4.4. B+Tree  

4.5. Hash

4.5.1. 结构

4.5.2. 特点

4.5.3. 存储引擎支持  

4.6. InnoDB为何选择B+tree索引

五、索引分类

5.1. 聚集索引&二级索引

5.2. 索引经典面试题

六、索引语法

6.1. 创建索引

6.2. 查看索引  

6.3. 删除索引

6.4. 案例演示


一、概述

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

我们通过一个简单的案例来了解下索引的具体作用,如下所示的表结构及其数据:

 假如我们要执行的SQL语句为 :

select * from user where age = 45; 

1). 无索引情况

在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。

2). 有索引情况

如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。

 此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。

备注: 这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并 不是索引的真实结构,索引的真实结构,后面会详细介绍。

二、索引特点

三、索引结构

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看MySQL中几个主要的存储引擎对于索引结构的支持情况。

注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。  

四、索引结构分析

4.1. 二叉树

假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:

如果主键是顺序插入的,则会形成一个单向链表,结构如下:

所以,如果选择二叉树作为索引结构,会存在以下缺点:
1. 顺序插入时,会形成一个链表,查询性能大大降低。
2. 大数据量情况下,层级较深,检索速度慢。

4.2. 红黑树

前面我们讲了如果使用二叉树作为索引结构的话将存在的问题,那么既然二叉树不行,我们是否可以选择红黑树,因为红黑树是一棵自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一棵平衡的二叉树,结构如下:

但是即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:
大数据量情况下,层级较深,检索速度慢。

所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是 B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree

4.3. B-Tree

B-TreeB树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。以一颗最大度数(max-degree)为5(5)的B-Tree为例,那这个B树每个节点最多存储4key5个指针: 注:树的度数指的是一个节点的子节点个数。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值