采用线性SVM对线性不可分的数据进行分类(含matlab实现)

本文展示了如何通过映射数据到高维,使线性不可分的数据变得可分,然后利用线性SVM进行分类。通过Matlab代码演示了这一过程,最终实现无训练误差的分类,且结果达到100%的真正例率和真负例率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍一种常用的分类器设计技巧[1]:将线性不可分的数据映射到高维后,使其变得线性可分,然后利用前面介绍的线性分类器进行无(训练)误差分类。

假设我们有如下图所示的训练数据,如何对其进行分类? 显然,此时的正负样本是不可分的,因为无法找到一个超平面(由于此处是二维数据,超平面退化成直线)将其分开。


在这里介绍一个有用的技术:将二维数据转化成五维数据,即

                                          

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值