本文介绍一种常用的分类器设计技巧[1]:将线性不可分的数据映射到高维后,使其变得线性可分,然后利用前面介绍的线性分类器进行无(训练)误差分类。 假设我们有如下图所示的训练数据,如何对其进行分类? 显然,此时的正负样本是不可分的,因为无法找到一个超平面(由于此处是二维数据,超平面退化成直线)将其分开。 在这里介绍一个有用的技术:将二维数据转化成五维数据,即